Ex:

Find the Thevenin equivalent circuit at terminals a and b. v_{x} must not appear in your solution. Note: $\alpha \neq 0$.

Sol'n: The Thevenin equivalent voltage is v_{ab} across the \mathbf{a} and \mathbf{b} terminals with nothing connected at \mathbf{a} and \mathbf{b}, with the + sign at \mathbf{a}. We observe that, if nothing is connected across \mathbf{a} and \mathbf{b}, no current flows in the left side of the circuit, and the voltage drop, v_{x}, across R_{1} equals zero volts. This in turn means the dependent source turns into an open circuit. Since no current flows in the dependent source and in R_{1}, no current flows in R_{2} and the voltage across R_{2} is zero. Thus, the voltage across the \mathbf{a} and \mathbf{b} terminals,(i.e., the Thevenin equivalent voltage, v_{Th}), is v_{s}.

$$
v_{\mathrm{Th}}=v_{\mathrm{s}}
$$

Now we short out the \mathbf{a} and \mathbf{b} terminals to find current $i_{\text {sc }}$ flowing from \mathbf{a} to \mathbf{b}. We use the node-voltage method, defining a node at the junction of the R^{\prime} s and dependent source.

We first define v_{x} in terms of the node voltage.

$$
v_{\mathrm{x}}=-v_{\mathrm{s}}-v_{1}
$$

Now we sum currents out of the node.

$$
\frac{v_{1}--v_{\mathrm{s}}}{R_{1}}+\alpha\left(-v_{\mathrm{s}}-v_{1}\right)+\frac{v_{1}}{R_{2}}=0 \mathrm{~A}
$$

or

$$
v_{1}\left(\frac{1}{R_{1}}-\alpha+\frac{1}{R_{2}}\right)=-\frac{v_{\mathrm{s}}}{R_{1}}+\alpha v_{\mathrm{s}}=v_{s}\left(\alpha-\frac{1}{R_{1}}\right)
$$

or

$$
v_{1}=v_{s} \frac{\alpha-\frac{1}{R_{1}}}{\frac{1}{R_{1}}-\alpha+\frac{1}{R_{2}}}=v_{s} \frac{\alpha R_{1}-1}{1-\alpha R_{1}+\frac{R_{1}}{R_{2}}}
$$

Now we observe that i_{sc} is the same as the current through R_{1}.

$$
i_{\mathrm{sc}}=\frac{v_{1}--v_{\mathrm{s}}}{R_{1}}=\frac{v_{\mathrm{s}}}{R_{1}}\left(\frac{\alpha R_{1}-1}{1-\alpha R_{1}+\frac{R_{1}}{R_{2}}}+1\right)
$$

or

$$
i_{\mathrm{sc}}=\frac{v_{1}--v_{\mathrm{s}}}{R_{1}}=\frac{v_{\mathrm{s}}}{R_{1}}\left(\frac{\alpha R_{1}-1}{1-\alpha R_{1}+\frac{R_{1}}{R_{2}}}+\frac{1-\alpha R_{1}+\frac{R_{1}}{R_{2}}}{1-\alpha R_{1}+\frac{R_{1}}{R_{2}}}\right)
$$

or

$$
i_{\mathrm{sc}}=\frac{v_{\mathrm{s}}}{R_{1}}\left(\frac{\frac{R_{1}}{R_{2}}}{1-\alpha R_{1}+\frac{R_{1}}{R_{2}}}\right)=v_{\mathrm{s}}\left(\frac{\frac{1}{R_{2}}}{1-\alpha R_{1}+\frac{R_{1}}{R_{2}}}\right)=v_{\mathrm{s}}\left(\frac{1}{R_{2}-\alpha R_{1} R_{2}+R_{1}}\right)
$$

or

$$
i_{\mathrm{sc}}=v_{\mathrm{s}}\left(\frac{1}{R_{1}+R_{2}-\alpha R_{1} R_{2}}\right)
$$

Now we use v_{Th} and i_{sc} to find the Thevenin equivalent resistance, R_{Th}.

$$
R_{\mathrm{Th}}=\frac{v_{\mathrm{s}}}{i_{\mathrm{sc}}}=\frac{v_{\mathrm{s}}}{v_{\mathrm{s}}\left(\frac{1}{R_{1}+R_{2}-\alpha R_{1} R_{2}}\right)}=R_{1}+R_{2}-\alpha R_{1} R_{2}
$$

Thevenin equivalent:

Note: An alternative approach is to use a current divider to find an equivalent resistance for the dependent source. The current through R_{1} splits into two parts, and we can equate the current in the dependent source with the current that would flow in an equivalent resistance, $R_{\text {eq. }}$.

$$
\frac{v_{x}}{R_{1}} \frac{R_{2}}{R_{2}+R_{\mathrm{eq}}}=\alpha v_{\mathrm{x}}
$$

Solving for $R_{\text {eq }}$, we have a value that is free of v_{x}.

$$
R_{\mathrm{eq}}=R_{2}\left(\frac{1}{\alpha R_{1}}-1\right)
$$

We may then replace the dependent source with $R_{\text {eq }}$ and calculate $R_{\text {Th }}$ as the resistance seen looking into the circuit from \mathbf{a} and \mathbf{b}.

$$
R_{\mathrm{Th}}=R_{1}+R_{2}\left\|R_{\mathrm{eq}}=R_{1}+R_{2}\right\|\left[R_{2}\left(\frac{1}{\alpha R_{1}}-1\right)\right]
$$

or

$$
R_{\mathrm{Th}}=R_{1}+R_{2}\left(1 \|\left(\frac{1}{\alpha R_{1}}-1\right)\right)=R_{1}+R_{2} \frac{\frac{1}{\alpha R_{1}}-1}{1+\frac{1}{\alpha R_{1}}-1}
$$

or

$$
R_{\mathrm{Th}}=R_{1}+R_{2} \frac{\frac{1}{\alpha R_{1}}-1}{\frac{1}{\alpha R_{1}}}
$$

or

$$
R_{\mathrm{Th}}=R_{1}+R_{2}\left(1-\alpha R_{1}\right)
$$

