1.

a) After being closed for a long time, the switch is opened at $t=0$. Give the values of the characteristic roots for the circuit and state whether $i(\mathrm{t})$ is underdamped, overdamped, or critically damped.
b) Write a numerical time-domain expression for $i(\mathrm{t})$, the current through the capacitance. This expression must not contain any complex numbers.
2.

a) Calculate the value of R_{L} that would absorb maximum power.
b) Calculate that value of maximum power R_{L} could absorb.
3.

Using superposition, derive an expression for i_{1} that contains no circuit quantities other than $i_{\mathrm{s}}, v_{\mathrm{s}}, R_{1}, R_{2}$, and α. Note: $\alpha>0$.
4.

After being open for a long time, the switch closes at $t=0$.
a) Calculate the energy stored on the inductor as $t \rightarrow \infty$.
b) Write a numerical expression for $v_{1}(t)$ for $t>0$.

