Ex:

a) After being closed for a long time, the switch is opened at $t=0$. Give the values of the characteristic roots for the circuit and state whether $i(\mathrm{t})$ is underdamped, overdamped, or critically damped.
b) Write a numerical time-domain expression for $i(\mathrm{t})$, the current through the capacitance. This expression must not contain any complex numbers.

SoL'n: a) When the switch is open, we have series RLC.

$$
\begin{aligned}
& \alpha=\frac{R}{2 L}=\frac{2.4 \mathrm{k}}{2.200 \mu}=\frac{1.4 k}{400} \mathrm{M}=6 \mathrm{M} / \mathrm{s} \\
& \omega_{o}^{2}=\frac{1}{L C}=\frac{1}{200 \mu 50 \mathrm{p}}=\frac{1}{10 k \mu \mathrm{p}}=\frac{1 \mathrm{M} \cdot \mathrm{M} \cdot \mathrm{M}}{10 \mathrm{k}}=100 \mathrm{M}^{2} / \mathrm{s}^{2} \\
& \therefore \quad \omega_{\mathrm{o}}=10 \mathrm{M} / s \\
& \omega_{d}=\sqrt{\omega_{o}^{2}-\alpha^{2}}=\sqrt{(10 \mathrm{M})^{2}-(6 \mathrm{M})^{2}}=8 \mathrm{M} / s \quad\left(6^{2}+8^{2}=10^{2}\right)
\end{aligned}
$$

We have an oscillatory solution, and the circuit is underdamped.
b) Now find initial condition (i.e. i and di/dt, or v and $d v / d t$ at $t=0^{+}$).

$$
\left.\begin{array}{l}
i_{L}\left(t=0^{+}\right)=i_{L}\left(t=0^{-}\right) \\
v_{C}\left(t=0^{+}\right)=v_{C}\left(t=0^{-}\right)
\end{array}\right\} \text {cannot change instantly }
$$

Circuit for $\mathrm{t}=0^{-}:$L's $=$wires, $\mathrm{C}^{\prime} \mathrm{s}=$ open circuits.

After the switch is open, $i=-i_{\mathrm{L}}$ since C and L are in series.
\therefore Solve for i_{L} and then change the sign. Note that i_{L} is the variable in the differential equation for a series $R L C$. Thus, we know how to find it.

We also need

$$
\left.\frac{d i_{L}(t)}{d t}\right|_{t=0^{+}}
$$

Use V-loop for RLC at $\mathrm{t}=0^{+}$:

$$
L \frac{d i_{L}}{d t}+i_{L} R-v_{C}=0 \mathrm{~V}
$$

Note that at $\mathrm{t}=0^{+},\left(\mathrm{i}_{\mathrm{R}}=\mathrm{i}_{\mathrm{L}}\right.$ since R, L in series $)$,

$$
\begin{aligned}
\left.\frac{d i_{L}}{d t}\right|_{t=0^{+}} & =\frac{-i_{L}\left(t=0^{+}\right) R+v_{C}\left(t=0^{+}\right)}{L} \\
\left.\frac{d i_{L}}{d t}\right|_{t=0^{+}} & =\frac{-\frac{1}{2} A \cdot 2.4 \mathrm{k} \Omega+1.2 \mathrm{k} \Omega}{200 \mu \mathrm{H}} \\
\left.\frac{d i_{L}}{d t}\right|_{t=0^{+}} & =0 \mathrm{~A} / \mathrm{s}
\end{aligned}
$$

Now use general underdamped solution:

$$
i_{L}(t)=\left(B_{1} \cos \omega_{d} t+B_{2} \sin \omega_{d} t\right) e^{-\alpha t}
$$

$$
\begin{aligned}
& B_{1}=i_{L}\left(t=0^{+}\right), \quad-\alpha B_{1}+\omega_{d} B_{2}=\left.\frac{d i_{L}}{d t}\right|_{t=0^{+}}=0 \mathrm{~A} / s \\
& \therefore \quad B_{1}=\frac{1}{2} \mathrm{~A}, \quad B_{2}=\frac{\alpha B_{1}}{\omega_{d}}=\frac{6 M}{8 M} \frac{1}{2} \mathrm{~A}=\frac{3}{8} \mathrm{~A} \\
& \therefore \quad-i(t>0)=\left(\frac{1}{2} \cos 8 \mathrm{M} t+\frac{3}{8} \sin 8 \mathrm{M} t\right) e^{-6 \mathrm{M} t} \mathrm{~A}
\end{aligned}
$$

