

Ex:

- a) Calculate the value of R_L that would absorb maximum power.
- b) Calculate that value of maximum power R_L could absorb.

We remove R_L, turn off the independent sources, and look in from the terminals for R_L to find R_{Th}.

RTH = 120 1 + 3300 1 1200 1

b)
$$P_{\text{max}} = \frac{V_{\text{Th}}^2}{4R_{\text{Th}}}$$

We find v_{Th} at the terminals where RL is connected but without R. Since VTh is squared, we may measure vTh in either direction.

No current flows in the bottom wire, since otherwise charge would accumulate on one side. So the two sides act as separate circuits.

$$V_1 = -20 \text{ mA} \cdot 120 \Omega = -2.4 V \text{ (ohds)}$$
 $V_2 = 9V \cdot 3300 \Omega = 6.6 V \text{ (v-divider)}$
 $3300+1200 \Omega$

$$V_{Th} = V_1 - V_2 = -2.4V - 6.6V = -9V$$

$$V_{Th} = V_1 - V_2 = -2.4V - 6.6V = -9V$$

$$P_{max} = \frac{(9V)^2}{4.1k\Omega} = 20.25 \text{ mW}$$