Ex:

a) Calculate the value of R_{L} that would absorb maximum power.
b) Calculate that value of maximum power R_{L} could absorb.
sol $\left(\begin{array}{l}n\end{array}\right.$ a) $R_{L}=R_{T h}$ for max pour transfer.
We remove R_{L}, turn off the independent sources, and look in from the terminals for R_{L} to find $R_{T h}$.

$$
R_{T h}=120 \Omega+3300 \Omega \| 1200 \Omega
$$

We have $3300\|1200 \Omega=100 \cdot 33\| 12 \Omega$

$$
\begin{aligned}
& =100 \cdot \frac{396}{45}_{44}^{44} \Omega \\
& =880 \Omega
\end{aligned}
$$

So
b) $p_{\text {max }}=\frac{V_{T h}^{2}}{4 R_{T h}}$

We find $V_{T h}$ at the terminals where R_{L} is connected but without R_{L}. Since $V_{T h}$ is squared, we may measure $v_{T h}$ in either direction.

No current flows in the bottom wire, since otherwise charge would accumulate on one side. So the two sides act as separate circuits.

$$
\begin{aligned}
& v_{1}=-20 \mathrm{~mA} \cdot 120 \Omega=-2.4 \mathrm{~V} \quad \begin{array}{c}
\text { (ohm's } \\
\text { law) }
\end{array} \\
& v_{2}=9 \mathrm{~V} \cdot \frac{3300 \Omega}{3300+1200 \Omega}=6.6 \mathrm{~V} \text { (V-divider) } \\
& v_{T h}=v_{1}-v_{2}=-2.4 \mathrm{~V}-6.6 \mathrm{~V}=-9 \mathrm{~V} \\
& P_{\max }=\frac{(-9 \mathrm{~V})^{2}}{4.1 \mathrm{k} \Omega}=20.25 \mathrm{~mW}
\end{aligned}
$$

