Ex:

Using superposition, derive an expression for i_{1} that contains no circuit quantities other than $i_{\mathrm{s}}, v_{\mathrm{s}}, R_{1}, R_{2}$, and α. Note: $\alpha>0$.
sol'n: We turn on one independent source at a time. Dependent sources are always on.
case I: v_{S} on, i_{s} off $=$ open

Because of the open circuit, the current $\alpha V_{x 1}$ flows thru R_{2} and up thru R_{1}.

The current flowing down thru R_{1} is $\quad v_{x i} / R_{1}$.

$$
\frac{v_{x_{1}}}{R_{1}}=-\alpha v_{x_{1}}
$$

The only possible sol'n is $v_{x 1}=0, i_{11}=0 A$.
Or we can use the node-voltage method.

$$
v_{1} \text { node: } \frac{v_{1}+v_{s}}{R_{1}+R_{2}}+\propto v_{x_{1}}=O A
$$

where $v_{x_{1}}=\left(v_{1}+v_{5}\right) \frac{R_{1}}{R_{1}+R_{2}}$
So $\left(v_{1}+v_{5}\right)\left(\frac{1+\alpha R_{1}}{R_{1}+R_{2}}\right)=O A$
Since $\alpha>0, \quad \frac{1+\alpha R_{1}}{R_{1}+R_{2}} \neq 0$.
Thus, $v_{1}+v_{s}=o v$ or $v_{1}=-v_{s}$.
This means the voltage drop across $R_{1}+R_{2}$ is on, giving $i_{1 l}=O A$.
case II: v_{s} off $=$ wire, i_{s} on

Using the node-voltage method, we have a current sum at v_{2} :

$$
\begin{aligned}
& \frac{v_{2}}{R_{1}+R_{2}}+\alpha v_{2} \frac{R_{1}}{R_{1}+R_{2}}-i_{5}=0 A \\
& \text { or } V_{2} \frac{1+\alpha R_{1}}{R_{1}+R_{2}}=i_{5} \\
& \text { or } v_{2}=i_{5} \frac{R_{1}+R_{2}}{1+\alpha R_{1}}
\end{aligned}
$$

$$
i_{12}=\frac{v_{2}}{R_{1}+R_{2}}=\frac{i_{s}}{1+\alpha R_{1}}
$$

Or we could use a current sum directly in terms of v_{x} :

$$
i_{s}=\frac{v_{x 2}}{R_{1}}+\alpha v_{x 2}=v_{x 2}\left(\frac{1}{R_{1}}+\alpha\right)
$$

or

$$
\begin{aligned}
& v_{x_{2}}=i_{s} \frac{R_{1}}{1+\alpha R_{1}} \\
& i_{12}=\frac{v_{x 2}}{R_{1}}=\frac{i_{s}}{1+\alpha R_{1}}
\end{aligned}
$$

The total i_{1} is the sum of i_{11} and i_{12}.

$$
\begin{gathered}
i_{1}=i_{11}+i_{12}=0+i_{12}=\frac{i_{s}}{1+\alpha R_{1}} \\
i_{1}=\frac{i_{s}}{1+\alpha R_{1}}
\end{gathered}
$$

