1.

Note: The 6 V in the $v_{g}(t)$ source is always on.
a) Write the Laplace transform, $V_{\mathrm{g}}(s)$, of $v_{\mathrm{g}}(t)$.
b) Draw the s-domain equivalent circuit, including source $V_{\mathrm{g}}(s)$, components, initial conditions for L and/or C, and terminals for $V_{0}(s)$.
c) Write an expression for $V_{0}(s)$.
d) Apply the final value theorem to find $\lim _{t \rightarrow \infty} v_{\mathrm{o}}(t)$.
2. a. Find $f(t)$ if

$$
F(s)=\frac{s+2}{(s+1)^{2}(s+4)}
$$

b. Plot the poles and zeros of $G(s)$ in the s plane

$$
G(s)=\frac{12+4 s}{(s+2)\left(s^{2}+25\right)\left(s^{2}+6 s+25\right)}
$$

c) Find $\mathcal{L}\{t u(t-3)\}$.
d) i. Find $\lim f(t)$ if

$$
F(s)=\frac{2 s^{4}+6 s^{3}+30 s^{2}+25 s+120}{s^{6}+14 s^{5}+112 s^{4}+448 s^{3}+975 s^{2}+625 s}
$$

ii. Find $\lim f(t)$ if

$$
F(s)=\frac{3\left(s^{3}+7 s^{2}+14 s+8\right)}{s^{4}+14 s^{3}+98 s^{2}+350 s+625}
$$

(All poles of $F(s)$ are in the left-half plane.)
e. Write an expression for $\mathrm{H}(s)$, below.

3.

The current source is a dc current source. After being open for a long time, the switch is closed at $t=0$.
a) Write an expression for $V(s)$, the Laplace transform of $v(t)$.
b) From $V(s)$, the Laplace transform of $v(t)$, find the numerical values of $v(t)$ for $t=0^{+}$and $t \rightarrow \infty$.
c) By taking the inverse Laplace transform of $V(s)$, write a numerical time-domain expression for $v(t)$.

