

Note: The 6 V in the $v_g(t)$ source is always on.

- a) Write the Laplace transform, $V_g(s)$, of $v_g(t)$.
- b) Draw the s-domain equivalent circuit, including source $V_g(s)$, components, initial conditions for L and/or C, and terminals for $V_o(s)$.
- c) Write an expression for $V_0(s)$.
- d) Apply the final value theorem to find $\lim_{t\to\infty} v_0(t)$.
- 2. a. Find f(t) if

$$F(s) = \frac{s+2}{\left(s+1\right)^2 \left(s+4\right)}$$

b. Plot the poles and zeros of G(s) in the *s* plane

$$G(s) = \frac{12+4s}{(s+2)(s^2+25)(s^2+6s+25)}$$

- c) Find $\mathcal{L}\left\{t u(t-3)\right\}$.
- d) i. Find $\lim_{t \to \infty} f(t)$ if $F(s) = \frac{2s^4 + 6s^3 + 30s^2 + 25s + 120}{s^6 + 14s^5 + 112s^4 + 448s^3 + 975s^2 + 625s}$ ii. Find $\lim_{t \to 0+} f(t)$ if

(All poles of F(s) are in the left-half plane.)

e. Write an expression for H(s), below.

The current source is a dc current source. After being open for a long time, the switch is closed at t = 0.

- a) Write an expression for V(s), the Laplace transform of v(t).
- b) From V(s), the Laplace transform of v(t), find the numerical values of v(t) for $t = 0^+$ and $t \to \infty$.
- c) By taking the inverse Laplace transform of V(s), write a numerical time-domain expression for v(t).

3.