Ex: a) Find $f(t)$ if

$$
F(s)=\frac{s+2}{(s+1)^{2}(s+4)}
$$

b) Plot the poles and zeros of $\mathrm{G}(\mathrm{s})$ in the s plane.

$$
G(s)=\frac{12+4 s}{(s+2)\left(s^{2}+25\right)\left(s^{2}+6 s+25\right)}
$$

c) Find $\mathcal{L}\{t u(t-3)\}$.
d) i. Find $\lim f(t)$ if

$$
F(s)=\frac{2 s^{4}+6 s^{3}+30 s^{2}+25 s+120}{s^{6}+14 s^{5}+112 s^{4}+448 s^{3}+975 s^{2}+625 s}
$$

ii. Find $\lim f(t)$ if

$$
t \rightarrow 0+
$$

$$
F(s)=\frac{3\left(s^{3}+7 s^{2}+14 s+8\right)}{s^{4}+14 s^{3}+98 s^{2}+350 s+625}
$$

(All poles of $F(s)$ are in the left-half plane.)
e) Write an expression for $\mathrm{H}(\mathrm{s})$.

SoL'n: a) Use partial fractions.

$$
\begin{aligned}
& F(s)=\frac{k_{1}}{s+4}+\frac{k_{2}}{(s+1)^{2}}+\frac{k_{3}}{s+1} \\
& k_{1}=\left.F(s)(s+4)\right|_{s=-4}=\left.\frac{s+2}{(s+1)^{2}} \frac{s+4}{s+4}\right|_{s=-4}=\frac{-4+2}{(-4+1)^{2}}=-\frac{2}{9} \\
& k_{2}=\left.F(s)(s+1)^{2}\right|_{s=-1}=\left.\frac{s+2}{(s+1)^{2}} \frac{(8+1)^{2}}{s+4}\right|_{s=-1}=\frac{-1+2}{-1+4}=\frac{1}{3} \\
& k_{3}=\left.\frac{1}{1!} \frac{d}{d s}\left[F(s)(s+1)^{2}\right]\right|_{s=-1}=\left.\frac{d}{d s} \frac{s+2}{s+4}\right|_{s=-1}
\end{aligned}
$$

or

$$
k_{3}=1 \cdot(s+4)^{-1}+\left.(s+2)(-1)(s+4)^{-2}\right|_{s=-1}
$$

or

$$
k_{3}=\frac{1}{-1+4}+\frac{(-1+2)(-1)}{(-1+4)^{2}}=\frac{1}{3}+\frac{-1}{9}=\frac{2}{9}
$$

Plugging in k_{1}, k_{2}, and k_{3} gives our expression for $F(s)$:

$$
F(s)=\frac{-2 / 9}{s+4}+\frac{1 / 3}{(s+1)^{2}}+\frac{2 / 9}{s+1}
$$

Use inverse Laplace transform for each term to get final answer:

$$
\mathcal{L}^{-1}\left\{\frac{k}{s+a}\right\}=k e^{-a t} \text { and } \mathcal{L}^{-1}\left\{\frac{k}{(s+a)^{2}}\right\}=k t e^{-a t}
$$

Thus, our answer is

$$
f(t)=-\frac{2}{9} e^{-4 t}+\frac{1}{3} t e^{-t}+\frac{2}{9} e^{-t}
$$

b)

$$
G(s)=\frac{4(3+s)}{(s+2)(s+j 5)(s-j 5)(s+3+j 4)(s+3-j 4)}
$$

The zeros are the roots of the numerator, (i.e., the values of s where $\mathrm{G}(s)$ goes to zero:

$$
4(3+s)=0 \Rightarrow 3+s=0 \Rightarrow s=-3
$$

We plot zeros as 0's in s-plane. (See answer plot below.)
The poles are the roots of the denominator, (i.e., the values of s where $\mathrm{G}(s)$ goes to infinity).

The root for a factor of form $s+\mathrm{a}$ is $s=-\mathrm{a}$.
Therefore, poles are at $s=-2,-\mathrm{j} 5, \mathrm{j} 5,-3-\mathrm{j} 4$, and $-3+\mathrm{j} 4$.
We plot poles as x's in s-plane.

c) One way to solve this problem is to make $t u(t-3)$ look like $v(t-3) u(t-3)$. To do so, we write t as $(t-3)+3$:

$$
\mathcal{L}\{t u(t-3)\}=\mathcal{L}\{[(t-3)+3] u(t-3)\}
$$

So $v(t-3)=(t-3)+3$ and we use the delay identity:

$$
\mathcal{L}\left\{v(t-a) u(t-a\}=e^{-a s} \mathcal{L}\{v(t)\} \text { when } a>0\right.
$$

We have $v(t)=t+3$ when we replace $t-3$ with t.

$$
\mathcal{L}\{t+3\}=\frac{1}{s^{2}}+\frac{3}{s}
$$

So our answer is

$$
\mathcal{L}\{t u(t-3)\}=e^{-3 s}\left(\frac{1}{s^{2}}+\frac{3}{s}\right)
$$

Another approach would be to use the identity for multiplication by t :

$$
\mathcal{L}\{t v(t)\}=-\frac{d}{d s} \mathcal{L}\{v(t)\}
$$

So we have $v(t)=u(t-3)=1 \cdot u(t-3)$, and we use the delay identity with $v(t-3)=1$, which means $v(t)=1$. (When we change from $v(t-a)$ to $v(t)$, we shift the function $v(t-a)$ to the left by a. If we have a constant function, shifting it left has no effect-it is still a horizontal line.

$$
\mathcal{L}\{1 \cdot u(t-3)\}=e^{-3 s} \mathcal{L}\{1\}=\frac{e^{-3 s}}{s}
$$

Now we use the identity for multiplication by t.

$$
\mathcal{L}\{t \cdot u(t-3)\}=-\frac{d}{d s} \frac{e^{-3 s}}{s}=-(-3) \frac{e^{-3 s}}{s}--\frac{e^{-3 s}}{s^{2}}
$$

or

$$
\mathcal{L}\{t u(t-3)\}=e^{-3 s}\left(\frac{1}{s^{2}}+\frac{3}{s}\right)
$$

This is the same answer as before.
d) i. Final value theorem:

$$
\begin{aligned}
\lim _{t \rightarrow \infty} f(t) & =\lim _{s \rightarrow 0} s F(s) \\
& =\lim _{\mathrm{s} \rightarrow 0} \frac{\mathrm{~s} \cdot\left(2 \mathrm{~s}^{4}+6 \mathrm{~s}^{3}+30 \mathrm{~s}^{2}+25 \mathrm{~s}+120\right)}{\mathrm{s}^{6}+14 \mathrm{~s}^{5}+112 \mathrm{~s}^{4}+448 \mathrm{~s}^{3}+975 \mathrm{~s}^{2}+625 \mathrm{~s}}
\end{aligned}
$$

We factor out the highest power of s that is common to every term in the numerator and refer to this as s^{n}. Since we multiply F(s) by s, we always
can factor out s^{1} from the numerator of $s \mathrm{~F}(s)$. Here, s^{1} is the highest power of s we can factor out from the numerator of $s \mathrm{~F}(s)$.

Note: If the numerator of $\mathrm{F}(s)$ ends with a term such as $3 s$, (for example), then we can factor out s^{2} from the numerator of $s \mathrm{~F}(s)$.

We also factor out the highest power of s that is common to every term in the denominator of $s \mathrm{~F}(s)$ and refer to this as s^{m}. Here, s^{1} is the highest power of s we can factor out from the denominator of $s \mathrm{~F}(s)$.

We now write

$$
s F(s)=\frac{s^{n}}{s^{m}} \frac{p(s)}{q(s)}
$$

where $\mathrm{p}(\mathrm{s})$ and $\mathrm{q}(\mathrm{s})$ are polynomials with nonzero constant terms.
In the limit as $s \rightarrow 0$, we have $p(s)=p(0)$ and $q(s)=q(0)$. We also have $s^{\mathrm{n}} / s^{\mathrm{m}}=1 / s^{\mathrm{n}-\mathrm{m}}$, and we can easily determine the behavior of this term as $s \rightarrow 0$. The following equation encapsulates these results:

$$
\lim _{s \rightarrow 0} s F(s)=\left\{\begin{array}{cc}
0 & n>m \\
\infty & n<m \\
\infty & \mathrm{n}=\mathrm{m}
\end{array}\right.
$$

Here,

$$
\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} \frac{s^{1}}{s^{1}} \underbrace{\frac{\overbrace{2 s^{4}+6 s^{3}+30 s^{2}+25 s+120}^{s^{5}+14 s^{4}+112 s^{3}+448 s^{2}+975 s+625}}{p(s)}}_{q(s)}
$$

This reduces to

$$
\lim _{t \rightarrow \infty} f(t)=\frac{p(0)}{q(0)}=\frac{120}{625}=\frac{24}{125}=0.192
$$

Note: $\quad \mathrm{s}^{\mathrm{n}} / \mathrm{s}^{\mathrm{m}}$ term gives $\mathrm{m}-\mathrm{n}=$ \# poles at origin (net).

$$
\lim _{t \rightarrow \infty} f(t)=\infty
$$

if $F(s)$ has two more poles than zeros at origin.
Note: We must have all poles in the left-half plane or at the origin. Otherwise, our time-domain solution will contain a term of form $e^{a t}, a \geq 0$, in $f(t)$. This is a nondecaying oscillation if $a=0$ and an exponentially growing solution if $a>0$.

Thus, the first step in applying the final value theorem is to verify that poles are in the left-half plane or at the origin, (i.e. a system that stabilizes).
d) ii. Initial value theorem.

$$
\lim _{t \rightarrow 0^{+}} f(t)=\lim _{s \rightarrow \infty} s F(s)
$$

or

$$
\lim _{t \rightarrow 0^{+}} f(t)=\lim _{s \rightarrow \infty}\left\lfloor s F(s)=\frac{\left.s \cdot 3\left(s^{3}+7 s^{2}+14 s+8\right)\right)}{s^{4}+14 s^{3}+98 s^{2}+350 s+635}\right\rfloor
$$

The highest power of s in numerator and denominator dominates as s becomes large. In other words, s^{2} becomes much larger than s or a constant term as s approaches infinity. Thus, for terms that are summed, we need only consider the term with the highest power of s.

$$
\begin{aligned}
& \lim _{\mathrm{t} \rightarrow 0^{+}} \mathrm{f}(\mathrm{t})=\lim _{\mathrm{s} \rightarrow \infty} \frac{\varnothing \cdot 3 \cdot 夕^{\beta}}{\mathrm{s}^{4}}=3 \\
& \therefore \quad f\left(t=0^{+}\right)=3
\end{aligned}
$$

e) Use delayed step-functions to create windows for piecewise definition of $h(t)$.

$$
\begin{array}{r}
h(t)=3[u(t-2)-u(t-5)] \\
\quad+5[u(t-5)-u(t-7)] \\
\\
\quad-2[u(t-7)-u(t-9)]
\end{array}
$$

Gather coefficients for each step-function:

$$
h(t)=3 u(t-2)+(5-3) u(t-5)-(2+5) u(t-7)+2 u(t-9)
$$

or

$$
h(t)=3 u(t-2)+2 u(t-5)-7 u(t-7)+2 u(t-9)
$$

Now use the identity for delayed functions:

$$
\mathcal{L}\{f(t-a) u(t-a), a>0\}=e^{-a s} F(s)
$$

where

$$
f(t)=u(t), \quad \mathcal{L}\{f(t)=u(t)\}=\frac{1}{s}
$$

Plugging the various values of delay for a, we get our final answer:

$$
H(s)=\frac{3 e^{-2 s}+2 e^{-5 s}-7 e^{-7 s}+2 e^{-9 s}}{s}
$$

