Ex:

The current source is a dc current source. After being open for a long time, the switch is closed at $t=0$.
a) Write an expression for $V(s)$, the Laplace transform of $v(t)$.
b) From $V(s)$, the Laplace transform of $v(t)$, find the numerical values of $v(t)$ for $t=0^{+}$and $t \rightarrow \infty$.
c) By taking the inverse Laplace transform of $V(s)$, write a numerical time-domain expression for $v(t)$.
sol'n: (a) First we find initial conditions for L and C . (We need these for s-domain models of L and C .)

For $\mathrm{t}=0^{-}, \mathrm{L}$ acts like short, C acts like open circuit.

$$
\begin{aligned}
& v\left(t=0^{-}\right)=I_{g} \cdot R \| R=1 \mathrm{~A} \cdot 2 \Omega=2 \mathrm{~V} \equiv v_{o} \\
& i_{L}\left(t=0^{-}\right)=I_{g} \cdot \frac{R}{R+R}=\frac{1}{2} \mathrm{~A} \equiv i_{o}
\end{aligned}
$$

When we close the switch, we short out the first R.
s-domain model:

Note: A DC source corresponds to a step function even if there is no switch and the source has the same output for all time. Thus, we have $\mathrm{I}_{\mathrm{g}} / s$ as the source in the s-domain. (Conceptually, we only need the current source for $\mathrm{t}>0$ because the initial conditions on L and C account for what the current source did for $\mathrm{t}<0$.)

$$
\mathcal{L}\left\{\mathrm{I}_{\mathrm{g}}\right\}=\mathcal{L}\left\{\mathrm{I}_{\mathrm{g}} u(t)\right\}=\frac{1}{s}
$$

Note: We may choose either a series $s \mathrm{~L}$ and V -source for L or a parallel sL and I-source for L . Here, the parallel I-source model is more convenient. The same applies to the C .

Normally, we might use superposition at this point, turning on the I-sources one at a time and then summing currents or voltages to get a final answer.

Here, however, we have parallel I-sources that sum:

Combining the parallel impedances and using $\mathbf{V}=\mathbf{I} \mathbf{z}$, we have
$V(s)=\left(\frac{1}{2 s}+2 \mu \mathrm{FV}\right) \cdot s L\|R\| \frac{1}{s C}$

To compute the parallel z value, we factor out numerators and use the following identity:

$$
\frac{1}{a}\left\|\frac{1}{b}\right\| \frac{1}{c}=\frac{1}{a+b+c}
$$

Thus, we factor out $s L$ and R :

$$
s L\|R\| \frac{1}{s C}=s L R \cdot \frac{1}{R}\left\|\frac{1}{s L}\right\| \frac{1}{s L R s C}=\frac{s L R}{R+s L+s^{2} R L C}
$$

Now divide by $R L C$ to get denominator in proper form:

$$
s L\|R\| \frac{1}{s C}=\frac{1}{C} \frac{s}{s^{2}+\frac{1}{R C} s+\frac{1}{L C}}
$$

Check: Using the numerator and the first term in the denominator, we have the following units analysis:

$$
\frac{s / C}{s^{2}}=\frac{1}{s C}
$$

Thus, we have an impedance as we should have. The other terms in the denominator have the same units as s^{2} since the units of s are, ironically, $1 / \mathrm{sec}$ or $1 / \mathrm{s}$.

Now we plug in numbers to compute $\mathrm{V}(s)$:
$\begin{array}{rl}\mathrm{V}(s) & =\left(\frac{1}{2 s}+2 \mu\right. \\ \frac{1+s 4 \mu}{2 \phi}\end{array} \underbrace{\frac{1 / \mathrm{C}}{\frac{1}{\mathrm{RC}} \frac{1}{\mathrm{LC}}}}_{\text {quadratic poles term }} \frac{1 \mathrm{M} \phi}{s^{2}+\frac{1 \mathrm{M}}{4} s+10 \mathrm{G}})$
Find poles for quadratic term in preparation for partial fractions:

$$
\begin{gathered}
s_{1,2}=-\frac{1 \mathrm{M}}{8} \pm \sqrt{\frac{1 \mathrm{M}}{8}{ }^{2}-10 \mathrm{G}} \quad \text { not complex poles } \\
\sqrt{(125 \mathrm{k})^{2}-(100 \mathrm{k})^{2}}
\end{gathered}
$$

$s_{1,2}=-125 \mathrm{k} \pm 75 \mathrm{k} \mathrm{rad} / \mathrm{s} \quad$ (based on $5^{2}-4^{2}=3^{2}$ pythagorean triple)
$s_{1}=-50 \mathrm{k}, \mathrm{s}_{2}=-200 \mathrm{rad} / \mathrm{s}$
Now use partial fractions:

$$
\begin{aligned}
& V(s)=\frac{k_{1}}{s+50 \mathrm{k}}+\frac{k_{2}}{s+200 \mathrm{k}} \\
& \begin{aligned}
\mathrm{k}_{1} & =\left.\mathrm{V}(s)(s+50 \mathrm{k})\right|_{s=-50 \mathrm{k}}=\frac{1-50 \mathrm{k} \cdot 4 \mu}{2} \cdot \frac{1 \mathrm{M}}{-50 \mathrm{k}+200 \mathrm{k}} \\
& =\frac{1-200 \mathrm{~m}}{2} \frac{1 \mathrm{M}}{150 \mathrm{k}} \\
& =\frac{800 \mathrm{pK}}{2} \frac{1 \mathrm{M}}{150 \mathrm{~K}}=\frac{8}{3} \\
\mathrm{k}_{2} & =\left.\mathrm{V}(s)(s+50 \mathrm{k})\right|_{s=-200 \mathrm{k}}=\frac{1-200 \mathrm{k} 4 \mu}{2} \frac{1 \mathrm{M}}{-200 \mathrm{k}+50 \mathrm{k}} \\
& =\frac{\square \cdot 1 \mathrm{M}}{-2(150 \mathrm{~K})}=-\frac{2}{3} \\
V(s) & =\frac{8 / 3}{s+50 \mathrm{k}}-\frac{2 / 3}{s+200 \mathrm{k}}
\end{aligned}
\end{aligned}
$$

sol'n: (b) Use the initial value theorem to find $\mathrm{v}\left(\mathrm{t}=0^{+}\right)$:

$$
v\left(t=0^{+}\right)=\lim _{s \rightarrow \infty} s V(s)=\lim _{s \rightarrow \infty} s \frac{1+s 4 \mu}{2} \frac{1 M}{s^{2}+\frac{1 M}{4} s+10 G}
$$

The largest power of s dominates in the numerator and in the denominator.

$$
v\left(t=0^{+}\right)=\lim _{s \rightarrow \infty} s V(s)=\lim _{s \rightarrow \infty} \frac{s^{2} 4 \mu 1 \mathrm{M}}{2 s^{2}}=\frac{4}{2}=2 \mathrm{~V} V
$$

Note: We expect $\mathrm{v}\left(0^{+}\right)=2 \mathrm{~V}$ since this is the initial capacitor voltage.
Use the final value theorem to find $\mathrm{v}(\mathrm{t} \rightarrow \infty)$:

$$
\begin{aligned}
\mathrm{v}(\mathrm{t} \rightarrow \infty) & =\lim _{s \rightarrow 0} s \mathrm{~V}(s)=\lim _{s \rightarrow 0} s \frac{1+s 4 \mu}{2} \frac{1 \mathrm{M}}{s^{2}+\frac{1 \mathrm{M}}{4} s+10 \mathrm{G}} \\
& =0 \cdot \frac{1}{2} \cdot \frac{1 \mathrm{M}}{10 \mathrm{G}}=0 \mathrm{~V}
\end{aligned}
$$

Note: We expect $v(t)$ to decay, since L becomes a short.
sol'n: (c) From part (a) we have

$$
V(s)=\frac{8 / 3}{s+50 \mathrm{k}}-\frac{2 / 3}{s+200 \mathrm{k}}
$$

Use the standard inverse Laplace transform term:

$$
\mathcal{L}^{-1}\left\{\frac{k}{s+a}\right\}=k e^{-a t}
$$

This gives the final answer:

$$
v(t>0)=\frac{8}{3} e^{-50 k t}-\frac{2}{3} e^{-200 k t} V
$$

