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ECE 3510    Lecture 1 notes   Introduction to Feedback Systems 
Syllabus.

Supplemental example and problem sessions will make this class much easier.

But it's still a 4-hour engineering class.  How can you survive??

1. Easiest way to get through school is to actually learn and try to retain what you are asked to learn.

Even if you're too busy, don't lose your good study practices.  
What you "just get by" on today will cost you later.

Don't fall for the "I'll never need to know this" trap.  Sure, much of what you learn you may not use, but some 
you will need, either in the current class, or future classes, or maybe sometime in your career.  Don't waste 
time second-guessing the curriculum, It'll still be easier to just do your best to learn and retain.

2. Don't fall for the "traps".

Homework answers, Problem session solutions, Posted solutions, Lecture notes.

3. KEEP UP!  Use calendar.

4. Make "permanent notes" after you've finished a subject or section and feel that you know it.

Signals  (INFORMATION !!)

For us: A time-varying voltage or current that carriers information. 
| 
|

   |
Audio, video, position, temperature, digital data, etc...

In some unpredictable fashion
DC is not a signal,  Neither is a pure sine wave.  If you can predict it, what information is it providing??
Neither DC nor pure sine wave have any "bandwidth". 

Recall Fourier series: Any periodic waveform can be represented by a series of sinewaves of different frequencies.

Blocks and block diagrams  (acting on signals (information))

transfer 
function

input information output information

Not cold air, but desired temperature Not hot air, but temperature of a room

Not fuel, but desired speed Not movement, but position or speed

These blocks DO NOT show the flow of materials, power, or energy needed to act upon the information.  For 
example, the input to a block might be the postion of the gas pedal in your car and the output might be the car's 
speed.  The energy input required is not shown and niether are the fuel and air moving through the engine.  
Although they are very important engineering concerns, we will not be considering those things in this class.

If possible we'd like to work with the blocks in a very simple mathmatical way:

transfer 
function

input output = input x transfer function

In this case, the transfer function =
output

input
This is NOT always possible

Blocks can be "hooked" together, that is, the output of one block could be the input to another

  first 
transfer 
function

output of first 
is the input to 
the second

second
transfer 
function

input output
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Blocks can be hooked together in more complex ways like this 
loop.  This is an example "feedback".
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One signal (usually the output) is fed back 
and compared to another (usually the input).

Example of a System  (A Position Servo with Feedback)

Input 
position 
Sensor

Controller
      and
 Amplifier

θθθθ in θθθθ outcompare Motor and Gears

Position 
Sensor

Again, the lines represent signals.  Yes, there may also be considerable power moving from one block to another 
or out the end, but that's not what we'll care about here.  All we really care about here is the basic information. 

Blocks represent subsystems, devices or components which act upon an input or inputs to produce an output.

We will want a mathmatical way to represent the signals and the action of the blocks so that we can get a 
better handle on what's happening, and, hopefully, make the whole sytem work as we want.

We'll assume that each of the blocks is linear and time invariant.  Anything else gets too hard too fast, and this is 
a good place to start.  Many real devices can be modeled as linear and time invariant, at least over some region of 
operation.

For linear systems, where the signals and systems can be represented by Laplace transforms:

X in( )s H( )s X out( )s = .X in( )s H( )s

Transfer function: H( )s =
X out( )s

X in( )s

Xin and Xout could be anything from small electrical signals to powerful mechanical motions or forces.

The variable "s" comes from Laplace transformations.

We will come back to this and spend a LOT more time on Laplace transforms and transfer functions 
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Yesterday we drew a block diagram on the board.  
Let's examine those blocks a little more closely

transfer 
function

input output

What's inside?

How are the input and output related?  If you know the input, how do you find the output?  Sometimes we can just multiply 
the input by the expression in the box to get the output.  Then the expression in the box is called a transfer function.

In that case, the transfer function =
output

input

A very simple case, a potentiometer .12 V
We measure the voltage over 
its range of motion to find Kp..10 kΩ

output 
voltage

K p =
output

input
= =

.4 V .4 V
.270 deg

29.63
mV

deg
= .1.7

V

radthe input is θ , .10 kΩ
the angle of the shaft

range of motion

In this case, "zero" must be in the 
center of the range of motion.10 kΩ

.12 V

θ in( )t K p = =.1.7
V

rad
0.03

V

deg
V out( )t = .K p θ in( )t

Nice... too bad it works for so few things in the time domain!  Simple voltage dividers, amplifiers, and not much else.
All real electrical systems also have inductors and capacitors.

i C = .C d

dt
v C+

.1

L
dtv L = i L +

v L = .L d

dt
i L v C = .1

C
dti C

--

We'll have to avoid capacitors and inductors-- they're too complicated...  You can't just multiply when there are 
differentials involved 

How about the mechanical world?  F = ma , Great, no differentials... uh, except... F = .m a = .m d

dt
v = .m d

d

2

2t
x

And then there are springs: F = .k x = .k dtv = .k dtdta

Isn't there some way that we could possibly replace all this differentiation and integration with multiplication and division?

Laplace transforms
d

dt
operation can be replaced with  s,          and dt can be replaced by

1

s

Then... +
+

v L = .L d

dt
i L v C = .1

C
dti C

- -
V L( )s = ..L s I L( )s V C( )s = ..1

C

1

s
I C( )s Z C=

1
.C s

Inductive impedance: Z L = .L s ECE 3510    Lecture 2 notes  p1
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Recall from your Ordinary Differential Equations class, the Laplace transform method of solving differential 
equations.  The Laplace transform allowed you to change time-domain functions to frequency-domain functions.

1) Transform your signals into the frequency domain with the Laplace transform.

F( )s = d
0

∞
t.f( )t e

.s t Unilateral Laplace transform

2) Solve your differential equations with plain old algebra, where:

d

dt
operation can be replaced with s,          and dt can be replaced by

1

s

3) Transform your result back to the time domain with the inverse Laplace transform.

f( )t = .1
..2 π j

d
c j∞

c j∞
s.F( )s e

.s t

OK, truth be told, we never actually use the inverse 
Laplace transform.  We use tables instead.

Then our nice, linear, blocks could contain Laplace transfer functions, like this:
Consider a circuit:

Using the impedances in a voltage divider:

C

V in v o H( )s =
V o( )s

V in( )s
= .

1

1

R

1
.L s

1

1

R

1
.L s

1
.C s

1

R

1
.L s

1

R

1
.L s

= .1

1
1
..C s R

1
...C s L s

s2

s2

=
s2

s2 .1
.C R

s
1
.C L

This could now be represented as a block operator:

s2

s2 .1
.C R

s
1
.C L

V in( )s V o( )s = .V in( )s H( )s

Transfer functions can be written for all kinds of devices and systems, not just electric circuits and the input and 
output do not have to be similar.  For instance, the potentiometers used to measure angular position in the servo 
have an angle as input and a voltage as output.

Laplace transforms will be important!!

BUT, remember, the first step is to transform the signals into the frequency domain with the Laplace transform.  
Maybe we ought to deal with the signals first...

FIRST: Laplace transforms of signals
Let's evaluate some of these and see if we can make a table

Ex. 1 f( )t = δ( )t The Impulse or "Dirac" function,  not a very likely signal in real life.

F( )s = d
0

∞
t.δ( )t e

.s t but: .δ( )t g( )t = .δ( )t g( )0 so:
any function

= d
0

∞
t.δ( )t e

.s 0 = d
0

∞
t.δ( )t 1 = 1
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Ex. 2 f( )t = u( )t The unit-step function, a constant value (DC) signal

F( )s = d
0

∞
t.u( )t e

.s t but: u( )t = 1 from 0 to ∞

0 1
 /  /∞

0
= d

0

∞
t.1 e

.s t = .1

s
e

.s t = .1

s
e

.s ∞ .1

s
e

.s 0 = 0 .1

s
( )1 =

1

s

if  s > 0

Im

s-plane

Re time-domain DC

"pole" is at 0

time

Ex. 3 f( )t = .u( )t eat

∞

0
F( )s = d

0

∞
t.eat e

.s t = d
0

∞
te

.( )a s t = .1

( )a s
e

.( )a s t

0
1

 /
 /

= .1

( )a s
e

.( )a s ∞ .1

( )a s
e

.( )a s 0 = 0 .1

( )a s
( )1 =

1

s a "pole" is at +a
if  s > a

for positive a values for negative a values
Im Im Im

s-plane A

s aa a a
Re Re Re

pole is at +a

Unbounded
signal

Bounded signals
eat

eat eat

That's 
not good

faster response

1

time time time
time-domain

This is the single most-important Laplace transform case.  In fact we really don't need any others.  Ex.1 can be 
thought of as this case with a = -∞ .  Ex. 2 can be thought of as a = 0.  And finally, all sinusoids can be made from 
exponentials if you let the poles (a) be complex.  Remember Euler's equations... 

Euler's equations e
..j ω t = cos( )ωt .j sin( )ωt e( ).α t ..j ω t = .e

.α t ( )cos( )ωt .j sin( )ωt

Pole Location(s) correspond to the type of signal. ECE 3510    Lecture 2 notes  p3
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Euler's equations cos( ).ω t =
e

..j ω t e
..j ω t

2
sin( ).ω t =

e
..j ω t e

..j ω t

.2 j

Ex. 4 f( )t = .u( )t cos( ).ω t

F( )s = d
0

∞
t.cos( ).ω t e

.s t = d

0

∞

t.e
..j ω t e

..j ω t

2
e

.s t = d

0

∞

t
e

.( ).j ω s t e
.( ).j ω s t

2

= .1

2
d

0

∞
te

.( ).j ω s t + .1

2
d

0

∞
te

.( ).j ω s t

∞

0

∞

0
= ..1

2

1
.j ω s

e
.( ).j ω s t + ..1

2

1

( ).j ω s
e

.( ).j ω s t

= 0 ..1

2

1
.j ω s

( )1 0 ..1

2

1

( ).j ω s
( )1 =

1
..2 j ω .2 s

1
..2 j ω .2 s

=
1

..2 j ω .2 s

1
.2 jω .2 s

=
( )..2 j ω .2 s ( )..2 j ω .2 s

.( )..2 j ω .2 s ( )..2 j ω .2 s

=
.4 s

.( )..2 j ω .2 s ( )..2 j ω .2 s
=

.4 s

..4 j2 ω2 .4 s2
=

s

ω2
s2

=
s

ω2
s2

Im Im
s-plane ω

ω
.A s B

s2 ω2Re Re
ω

ω

Bounded signal

Doesn't
convergetime-domain time

time

What if the poles have a real component? f( )t = ..u( )t e
.α t sin( ).ω t

Im Im

ω ω.A s B

( )s α 2 ω2

α α
Re Re

Unbounded signalω ω
Doesn't
converge

Bounded signal

time time

converges
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Ex. 5 Multiply by time property

f( )t = ..u( )t t e
.a t F( )s = d

0

∞
t..t e

.a t e
.s t = d

0

∞
t.t e

.( )a s t

Remember integration by parts:

dt.h( )t d

d t
g( )t = .h( )t g( )t dt.g( )t d

d t
h( )t

choose: h( )t = t from which: d

dt
h( )t = 1

and: d

dt
g( )t = e

.( )a s t from which: g( )t = dte
.( )a s t =

e
.( )a s t

( )a s

.h( )t g( )t - dt.g( )t d

d t
h( )t

∞

0

∞

0

∞

0
F( )s = d

0

∞
t.t e

.( )a s t = .t
e

.( )a s t

( )a s
- d

0

∞

t.e
.( )a s t

( )a s
( )1 = .t

e
.( )a s t

( )a s
-

e
.( )a s t

( )a s 2

= 0 - 0 - 0
1

( )a s 2

=
1

( )a s 2
=

1

( )s a 2

The easy way:

Use the "multiplication by time" property # 5 on p.8 of the Bodson textbook

.t x( )t <=> d

ds
X( )s

.t e
.a t <=> d

ds

1

s a
= d

ds
( )s a 1 = ..1

1

1

( )s a 2

d

ds
( )s a = .1

( )s a 2
1 =

1

( )s a 2

Anything that works for exponentials also works for sines and cosines...

Im

dbl ω And "DC" too....A s B

s2 ω2 2 Im

Re
A

s2

dbl
Re

dbl ω
Unbounded signal

Doesn't
converge Unbounded signal..t sin( ).ω t u( )t

time
Doesn't
converge.t u( )t

time
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Signal Type, Boundedness, and Convergence can be predicted from the poles
Poles in the Open-Left-Half-Plane (OLHP) Real part of pole is negative Re s p < 0

Im
Im ImA

s a

.A s B

( )s a 2 b2<a 0 b or ω
a a

Re Re
<a 0 a

Re
or α

eat eat

b or ω

faster response time

time time

Bounded signals, Converge to zero
---------------------------------------------------------------------------------------

Single Poles on Imaginary Axis Real part of pole is zero Re s p = 0

Im Im
Im .A s B

s2 ω2 ω
A

s
Re ω

Re Re
"pole" is at origin ω

ω

Bounded signal
DC

time time time

Bounded signal, 
Converges to DC value Bounded signals, Don't Converge

--------------------------------------------------------------------------------------- Im
dbl ω or bDouble Poles on Imaginary Axis or 

Im
.A s B

s2 ω2 2A

s2
Re

dbl
Re

dbl

.t u( )t ..t sin( ).ω t u( )t

and/or cosine time
time

In the Open-Right-Half-Plane (ORHP)
Im

ω or b
Im

Re
time

a
Re

time

Unbounded signals, Don't ConvergeECE 3510    Lecture 2 & 3 notes  p6



ECE 3510    Laplace Transforms  (Unilateral)

            f(t)                       F(s)           

f( )t = .1
..2 π j

d
c j∞

c j∞
s.F( )s e

.s t F( )s = d
0

∞
t.f( )t e

.s t

 \
c is a constant within the region of convergence

1 δ( )t 1

1

s2 u( )t

1

s23 .t u( )t

!n

sn 14 .tn u( )t

5a .e
.a t u( )t

1

s a

1

s
1

τ

τ = 
1

a
 = time constant

5b .e

t

τ u( )t

6 ..t e
.a t u( )t

1

( )s a 2

7 ..tn e
.a t u( )t

!n

( )s a n 1

s

s2 b28a .cos( ).b t u( )t b = ω = radian frequency

b

s2 b28b .sin( ).b t u( )t

s a
.( )s ( )a bj ( )s ( )a bj

=
s a

s2 ..2 a s a2 b29a ..e
.a t cos( ).b t u( )t

s a

( )s a 2 b2
=

s a

s2 ...2 ζ ω n s ω n
2

b
.( )s ( )a bj ( )s ( )a bj

=
b

s2 ..2 a s a2 b29b ..e
.a t sin( ).b t u( )t

b

( )s a 2 b2
=

b

s2 ...2 ζ ω n s ω n
2

( )s a 2 b2

( )s a 2 b2 2
=

( )s a 2 b2

s2 ..2 a s a2 b2 211a ...t e
.a t cos( ).b t u( )t

..2 b ( )s a

( )s a 2 b2 2
=

..2 b ( )s a

s2 ..2 a s a2 b2 211b ...t e
.a t sin( ).b t u( )t

Euler's equations cos( ).ω t =
e

..j ω t e
..j ω t

2
sin( ).ω t =

e
..j ω t e

..j ω t

.2 j

ECE 3510    Laplace Transforms 



ECE 3510    Laplace Properties

   Operation               f(t)                       F(s)           

Addition f( )t g( )t F( )s G( )s

Scalar multiplication .k f( )t .k F( )s

Linearity .k f( )t .n g( )t .k F( )s .n G( )s

Time differentiation d

dt
f( )t .s F( )s f 0_

d

d

2

2t
f( )t .s2 F( )s .s f 0_ d

dt
f 0_

initial slope

d

d

3

3t
f( )t .s3 F( )s .s2 f 0_ .s d

dt
f 0_ d

d

2

2t
f 0_

initial 
slope

initial 
curvature

Time integration d

0_

t
τf( )τ .1

s
F( )s

d
∞

t
τf( )τ .1

s
F( )s .1

s
d

∞

0_

tf( )t

Time shift .f t t 0 u t t 0
.F( )s e

.s t 0 t0 > 0

Frequency shift .f( )t e
.s 0 t

F s s0

Frequency differentiation .t f( )t d

ds
F( )s

Frequency integration f( )t

t
d

s

∞
s'F( )s'

Scaling f( ).a t a > 0 .1

a
F

s

a

Time convolution f( )t g( )t .F( )s G( )s*
Frequency convolution .f( )t g( )t .1

..2 π j
F( )s G( )s*

Initial value f(0+) lim
∞s

.s F( )s >n m
# of poles > # of zeroes

Final value f( )∞ lim
0s

.s F( )s (all poles of sF(s) in LHP)
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