ECE 3510

Electrical Analogies of Mechanical Systems

A.Stolp 2/14/06, rev,2/11/09

This method is based on the method of Linear Graphs. In Linear Graphs, all systems are reduced to a universal symbology peculiar to Linear Graphs (system graph) and then analyzed by methods very similar to those used with electric circuits. Since we, as electrical engineers, are already well versed in the symbology of electric circuits, my variation of linear graphs reduces mechanical systems to electric circuits and leaves them in that symbology for ready analysis by methods, tools and computer programs that we are already familiar with.

Across and Through Variables

	Across Variable	Through Variable	2
Electrical	V = voltage (volts) or (V) I = current (An	nps) or (A)
Mechanical translational	$v = velocity \left(\frac{m}{sec}\right)$	F = force (new	wtons) or (N) or $\left(Kg \cdot \frac{m}{sec^2} \right)$
Mechanical rotational	ω = angular velocity $\left(\frac{\operatorname{rad}}{\operatorname{sec}}\right)$	$T = torque (N \cdot I)$	m)
Fluid	$P = pressure \left(\frac{N}{m^2}\right) or$	(Pa) $Q = flow \left(\frac{m^3}{sec}\right)$	
		Across Variable	Through Variable
Elements	Dissipation	Energy Storage	Energy Storage
Electrical	$R = resistance\left(\frac{V}{A}\right) \text{ or } (\Omega)$	C = capacitance $\left(\frac{A \cdot sec}{V}\right)$ or (F)	$L = inductor \left(\frac{V \cdot sec}{A}\right) or (H)$
Mechanical translational	$B = damping \left(\frac{N \cdot sec}{m}\right)$	M = mass (Kg) or $\left(\frac{N \cdot \sec^2}{m}\right)$	$k = Spring constant \left(\frac{N}{m}\right)$
Mechanical rotational	B = damping (N·m·sec) or $\left[\frac{N \cdot m}{\left(\frac{rad}{sec}\right)}\right]$	$ \begin{array}{l} J & = \text{ moment of inertia } \left(\frac{N \cdot m^3}{\text{ sec}^2} \right) \\ \left(Kg \cdot m^2 \right) & \text{ or } \left(\frac{N \cdot m^3}{\text{ sec}^2} \right) \end{array} $	$\mathbf{k} = \mathbf{Spring \ constant} \ \left(\frac{\mathbf{N} \cdot \mathbf{m}}{\mathbf{rad}}\right)$
Fluid	R_{f} = fluid resistance $\left(\frac{N \cdot sec}{m^{5}}\right)$	C $_{f}$ = fluid capacitance $\left(\frac{m^{5}}{N}\right)$	I = fluid inertia $\left(\frac{Kg}{m^4}\right)$

Basic Electric Circuit Analysis

Element	Parts like resistors, capacitors, inductors & transformers	
Wires and connections	Direct the current, but do not affect voltage	
Circuit	Wires and elements connected to form loops	
Voltage	Measured as a difference across an element	
Current	Flows through a wire or element	
Kirchhoff's Current Law (KCL)	Current in = current out of all elements, wires & connections	
Kirchhoff's Voltage Law (KVL)	Voltage gains = voltage "losses" around any circuit loop	
Node	Connected wires and connections which all have the same voltage	
Ground	Zero-reference node for all other nodal voltages	
Branch	Connected wires and elements which all have the same current	
Power $P = V \cdot I$	Power = Across variable x Through variable	
Voltage Source	Constant voltage regardless of current in or out	
Current Source	Constant current regardless of voltage + or - FCF 3510 Flectrical Analogies of Mechanical Systems n 1	
Т	ECE 3510 Electrical Analogies of Mechanical Systems p.1	

Passive Electrical Elements

You can replace the entire transformer and load with $(\mathbf{Z_{eq}}).$ This "impedance transformation" can work across systems.

ECE 3510 Electrical Analogies of Mechanical Systems p.2

Mechanical system with linear motion (translational)

s

v	= velocity	$\left(\frac{\mathbf{m}}{\mathbf{sec}}\right)$	
x	= displace	ment (n	1)
X (ir	(s) = displa n freq doma	cement lin)	(m·sec)

(N)

Dissipation element:

power

$$P = v \cdot F = \frac{F^2}{B}$$

$$= v^2 \cdot B$$

 $E = \frac{1}{2} \cdot \frac{1}{k} \cdot F^2 = \frac{1}{2} \cdot k \cdot x^2$

Springs are sometimes shown like this:

Through variable energy storage:

Mass with friction

Impedance

Capacitor and resistor

Electrical Analogies of Mechanical Systems p.3 ECE 3510

Mechanical system with circular motion (rotational)

Mechanical rotational

 $T = Torque (N \cdot m)$

Through Variable:

Across Variable:

 $\int \omega \, dt$ $\frac{\omega(s)}{s}$

Dissipation element:

power

$$P = v \cdot T = \frac{T^2}{B}$$
$$= \omega^2 \cdot B$$

<u>م</u>

Through variable energy storage:

Through variable

 $E = \frac{1}{2} \cdot J \cdot \omega^2$

energy storage:

 $E = \frac{1}{2} \cdot \frac{1}{k} \cdot T^2$

Moment of Inertia, J

J with friction

ECE 3510 Electrical Analogies p.4

B or f sliding friction

Electrical

I = current (A)

V = voltage (V)

Source:

Source:

Resistor

 $\frac{1}{B}$ or $\frac{1}{f}$

 $\frac{s}{k}$

K

Capacitor hooked to ground

 $\frac{1}{J \cdot s}$

Fluid (hydraulic) system

Through Variable:

Across Variable:

Dissipation element: power

$$P = P \cdot Q = \frac{Q^2}{R_f}$$
$$= P^2 \cdot R_f$$

Through variable energy storage:

$$E = \frac{1}{2} \cdot I \cdot Q^2$$

Through variable energy storage:

open top tank

 Q_i

∆volume

sprinas

Qi

OR

 Q_{0}

Fluid resistance

R_f

XXXXXX

m

P_o

0

Р

or (Pa)

<u>Fluid</u>

P = Pressure

Ρi

Q = volumetric flow rate

Resistor

Impedance

R_f

Capacitor $\overline{C_{f}s}$ 0

Turbines & pistons convert through variables to across variables & vice versa, so there are no good electrical analogies.

Yet you can still transform an impedance from a mechanical system into the fluid system. You, II find that capacitors become inductors, inductors become capacitors and parallel swaps with series.

$$\mathbf{Z}_{\mathbf{eq}} = \frac{\Delta \cdot \mathbf{P}}{\mathbf{Q}} = \frac{\left\langle \frac{\mathbf{T}}{\mathbf{K}} \right\rangle}{\mathbf{K} \cdot \boldsymbol{\omega}} = \frac{1}{\mathbf{K}^2} \cdot \frac{\mathbf{T}}{\mathbf{\omega}} = \frac{1}{\mathbf{K}^2} \cdot \frac{1}{\mathbf{Z}_2} = \frac{1}{\mathbf{K}^2 \cdot \mathbf{Z}_2}$$
$$\mathbf{Z}_{\mathbf{eq}} = \frac{\mathbf{P}}{\mathbf{Q}} = \frac{\left\langle \frac{\mathbf{F}}{\mathbf{A}} \right\rangle}{\mathbf{A} \cdot \mathbf{v}} = \frac{1}{\mathbf{A}^2} \cdot \frac{\mathbf{F}}{\mathbf{v}} = \frac{1}{\mathbf{A}^2} \cdot \frac{1}{\mathbf{Z}_2} = \frac{1}{\mathbf{A}^2 \cdot \mathbf{Z}_2}$$

h

Р

∆h∙A

ECE 3510 Electrical Analogies of Mechanical Systems p.5

Transducers and Transformers

A transducer converts power from one type to another. We can model many of them with transformers. Transformers increase the through variable and correspondingly decrease the across variable or vice-versa.

 $\omega \ T_{shaft}$

ECE 3510 Electrical Analogies of Mechanical Systems p.6

ECE 3510

A.Stolp 2/11/09, rev,1/30/15

Example 1

Transfer function

1

$$\frac{\mathbf{V}_{\mathbf{M}}(\mathbf{s})}{\mathbf{V}_{\mathbf{in}}(\mathbf{s})} = \frac{\overline{\mathbf{C}\cdot\mathbf{s} + \frac{1}{R_{\mathbf{eq}}}}}{\mathbf{L}\cdot\mathbf{s} + \frac{1}{\mathbf{C}\cdot\mathbf{s} + \frac{1}{R_{\mathbf{eq}}}}} \frac{\left(\mathbf{C}\cdot\mathbf{s} + \frac{1}{R_{\mathbf{eq}}}\right)}{\left(\mathbf{C}\cdot\mathbf{s} + \frac{1}{R_{\mathbf{eq}}}\right)} = \frac{1}{\mathbf{L}\cdot\mathbf{C}\cdot\mathbf{s}^{2} + \frac{\mathbf{L}}{R_{\mathbf{eq}}}\cdot\mathbf{s} + 1} \cdot \frac{\left(\frac{1}{\mathbf{L}\cdot\mathbf{C}}\right)}{\left(\frac{1}{\mathbf{L}\cdot\mathbf{C}}\right)} = \frac{\frac{1}{\mathbf{s}^{2} + \frac{1}{\mathbf{C}\cdot\mathbf{R}_{\mathbf{eq}}}\cdot\mathbf{s} + \frac{1}{\mathbf{L}\cdot\mathbf{C}}}$$

$$\frac{V_{M}(s)}{Vel_{in}(s)} = \frac{\frac{k}{M}}{s^{2} + \frac{B_{eq}}{M} \cdot s + \frac{k}{M}} = \frac{\frac{20 \cdot N}{2 \cdot kg \cdot m}}{s^{2} + \frac{1.6 \cdot N \cdot sec}{2 \cdot kg \cdot m} \cdot s + \left(\frac{20 \cdot N}{2 \cdot kg \cdot m}\right)} = \frac{10}{s^{2} + 0.8 \cdot s + 10}$$
 same, either way without units

ECE 3510 Mechanical to Electrical Examples p.1

ECE 3510 Mechanical to Electrical Examples p.2

Example 3

ECE 3510 Mechanical to Electrical Examples p.3

ECE 3510 Mechanical to Electrical Examples p.3

Circuit with a transformer.

Circuit without a transformer.

ECE 3510 Mechanical to Electrical Examples p.4

ECE 3510 homework #8

Due: Sat, 2/11/23

 F_{in}

>v_{out}

Μ

Recall that the units of

k

a2

Use the current-force analogy discussed in class for the following problems.

- 1. a) Find the equivalent electric circuit for the mechanical system shown. ${\rm F}_{\rm in}$ is an input.
 - b) Find the transfer function for the system. $\frac{v_{out}(s)}{F_{in}(s)}$
 - c) Check the units of all coefficients of the transfer function to make sure they agree and work out to the units of velocity over force.
 - d) The resonant frequency of an electrical circuit can be found from $\frac{1}{\sqrt{L \cdot C}}$. What is it for this system?
 - e) Find the transfer function for the system. $\frac{x_{out}(s)}{F_{in}(s)}$ Where x is the displacement of the mass rather than its velocity.
- 2. Find the equivalent electric circuit for the
- 2. Find the equivalent electric circuit for the mechanical system shown. u(t) is an input. Show x-velocity and q-velocity on the circuit.
- 3. Find the equivalent electric circuit for the mechanical system shown. r(t) is an input. Show $v_1 & v_2$ on the circuit.

Answers

ECE 3510 homework # 8

4. Find the equivalent electric circuit for the levitated rocket sled shown. The rocket is a force input. There is no friction between the sled and guide rail, but there is air resistance (which can be modeled in exactly the same way as friction between the sled and guide rail) The accelerometer is firmly mounted onto the sled. Show x-velocity and y-velocity on the circuit.

ECE 3510 homework # 9

Use the current-force analogy discussed in class for the following problems.

1. Find the equivalent electric circuit for the mechanical system shown. v_{in} is the input.

2. Find the equivalent electric circuit for the mechanical system shown. ω_{in} is the input.

v in

3. Find the equivalent electric circuit for the fluid system shown.

ECE 3510 homework # 9