This method is based on the method of Linear Graphs. In Linear Graphs, all systems are reduced to a universal symbology peculiar to Linear Graphs (system graph) and then analyzed by methods very similar to those used with electric circuits. Since we, as electrical engineers, are already well versed in the symbology of electric circuits, my variation of linear graphs reduces mechanical systems to electric circuits and leaves them in that symbology for ready analysis by methods, tools and computer programs that we are already familiar with.

The objective is to be able to take a mechanical system like this:

And be able to draw an equivalent electrical circuit like this:

Because we know how to analyze the circuit:

Lecture: Skip forward to "Mechanical system with linear motion (translational)" Material below is for later reference.

Across and Through Variables

Across Variable

Electrical	$\mathrm{V}=$ voltage (volts) or (V)
Mechanical translational	$\mathrm{v}=$ velocity $\left(\frac{\mathrm{m}}{\mathrm{sec}}\right)$
Mechanical rotational	$\omega=$ angular velocity $\left(\frac{\mathrm{rad}}{\mathrm{sec}}\right)$
Fluid	$\mathrm{P}=$ pressure $\left(\frac{\mathrm{N}}{\mathrm{m}^{2}}\right)$ or (Pa)

Through Variable

I = current (Amps) or (A)
$\mathrm{F}=$ force \quad (newtons) or (N) or $\left(\mathrm{Kg} \cdot \frac{\mathrm{m}}{\mathrm{sec}^{2}}\right)$
$\mathrm{T}=$ torque $\quad(\mathrm{N} \cdot \mathrm{m})$
$Q=$ flow $\left(\frac{\mathrm{m}^{3}}{\mathrm{sec}}\right)$

Elements

Electrical
Mechanical translational

Mechanical rotational

Fluid

Across Variable

Energy Storage
$\mathrm{C}=$ capacitance $\left(\frac{\mathrm{A} \cdot \mathrm{sec}}{\mathrm{V}}\right)$ or (F)
$M=$ mass (Kg) or $\left(\frac{N \cdot \sec ^{2}}{m}\right) \quad k=$ Spring constant $\left(\frac{N}{m}\right)$
$\mathrm{J}=$ moment of inertia $\left(\frac{\mathrm{N} \cdot \mathrm{m}^{3}}{\mathrm{sec}^{2}}\right) \quad \mathrm{k}=$ Spring constant $\left.\left(\frac{\mathrm{N} \cdot \mathrm{m}}{\mathrm{rad}}\right)\right)$
$C_{f}=$ fluid capacitance $\left(\frac{\mathrm{m}^{5}}{\mathrm{~N}}\right)$
$I=$ fluid inertia $\left(\frac{\mathrm{Kg}}{\mathrm{m}^{4}}\right)$

Basic Electric Circuit Analysis

Element
Wires and connections
Circuit
Voltage
Current
Kirchhoff's Current Law (KCL)
Kirchhoff's Voltage Law (KVL)
Node
Ground
Branch
Power $\quad \mathrm{P}=\mathrm{V} \cdot \mathrm{I}$
Voltage Source

Parts like resistors, capacitors, inductors \& transformers
Direct the current, but do not affect voltage
Wires and elements connected to form loops
Measured as a difference across an element
Flows through a wire or element
Current in = current out of all elements, wires \& connections
Voltage gains = voltage "losses" around any circuit loop
Connected wires and connections which all have the same voltage
Zero-reference node for all other nodal voltages
Connected wires and elements which all have the same current
Power $=$ Across variable \times Through variable
Constant voltage regardless of current in or out

Current Source
Constant current regardless of voltage + or -

Passive Electrical Elements

Resistors V = I•R
Resistors dissipate power $\mathrm{P}=\mathrm{V} \cdot \mathrm{I}=\mathrm{I}^{2} \cdot \mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$

Capacitors

Energy stored in electric field: $\mathrm{E}_{\mathrm{C}}=\frac{1}{2} \cdot \mathrm{C} \cdot \mathrm{V}_{\mathrm{C}}{ }^{2}$
Capacitor voltage cannot change instantaneously
Laplace: Impedance: $\mathbf{Z}_{\mathbf{C}}=\frac{1}{\mathrm{C} \cdot \mathrm{s}}$

Inductors

Energy stored in magnetic field: $\quad \mathrm{E}_{\mathrm{L}}=\frac{1}{2} \cdot \mathrm{~L} \cdot \mathrm{I}_{\mathrm{L}}{ }^{2} \quad$ Inductor current cannot change instantaneously
Laplace: Impedance: $\mathbf{Z}_{\mathbf{L}}=\mathrm{L} \cdot \mathrm{s}$

Transformers (ideal)

Ideal: $\quad \mathrm{P}_{1}=\mathrm{P}_{2} \quad$ power in $=$ power out
Turns ratio $=\mathrm{N}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}} \quad \begin{aligned} & \text { Note: some books define } \\ & \text { the turns ratio as } \mathrm{N}_{2} / \mathrm{N}_{1}\end{aligned}$

Equivalent impedance in primary: $\quad \mathbf{Z} \mathbf{e q}=\mathrm{N}^{2} \cdot \mathbf{Z}_{\mathbf{2}}=\left(\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\right)^{2} \cdot \mathbf{Z}_{\mathbf{2}}$
You can replace the entire transformer and load with $\left(\mathbf{Z}_{\mathbf{e q}}\right)$. This "impedance transformation" can work across systems.

Mechanical system with linear motion (translational)

Mechanical translational

Through Variable:
Across Variable:
$\int v d t$
$\frac{\mathrm{V}(\mathrm{s})}{\mathrm{s}}$
F $=$ Force $\quad(\mathrm{N})$
$\mathrm{v}=$ velocity $\left(\frac{\mathrm{m}}{\mathrm{sec}}\right)$
$\mathrm{x}=$ displacement (m)
$\mathrm{X}(\mathrm{s})=$ displacement $(\mathrm{m} \cdot \mathrm{sec})$ (in freq domain)

$$
\begin{aligned}
P & =v \cdot F=\frac{F^{2}}{B} \\
& =v^{2} \cdot B
\end{aligned}
$$

Through variable energy storage:

$$
\mathrm{E}=\frac{1}{2} \cdot \frac{1}{\mathrm{k}} \cdot \mathrm{~F}_{(\mathrm{F}=\mathrm{kx})}^{2}=\frac{1}{2} \cdot \mathrm{k} \cdot \mathrm{x}^{2}
$$

Springs are sometimes shown like this:

Damper or friction
B or f

F

Across variable energy storage:

$$
\mathrm{E}=\frac{1}{2} \cdot \mathrm{M} \cdot \mathrm{v}^{2}
$$

$$
\frac{\mathrm{s}}{\mathrm{k}}
$$

Capacitor hooked to ground

$\frac{1}{\mathrm{M} \cdot \mathrm{s}}$

Capacitor and resistor

Electrical

I = current (A)
$\mathrm{V}=$ voltage (V)

Source:

$\frac{s}{k}$

$$
\frac{1}{B} \text { or } \frac{1}{f}
$$

$\frac{1}{M \cdot s+B}$

Do Examples 1 and 2

Transformers (ideal)

Two coils of wire that are magnetically coupled.
Electrical transformers are only useful for AC, which is not true of mechanical transformers
Transformers are used to increase/decrease voltages/currents.

$$
\text { Ideal: } \quad \mathrm{P}_{1}=\mathrm{P}_{2}
$$

power in = power out
Turns ratio $=\mathrm{N}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\frac{\mathbf{V}_{\mathbf{1}}}{\mathbf{V}_{\mathbf{2}}}=\frac{\mathbf{I}_{\mathbf{2}}}{\mathbf{I}_{\mathbf{1}}}$
Note: some books define the turns ratio as $\mathrm{N}_{2} / \mathrm{N}_{1}$

Equivalent impedance in primary: $\mathbf{Z}_{\mathbf{e q}}=\mathrm{N}^{2} \cdot \mathbf{Z}_{\mathbf{2}}=\left(\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\right)^{2} \cdot \mathbf{Z}_{\mathbf{2}}$
You can replace the entire transformer and load with ($\mathbf{Z}_{\text {eq }}$). This "impedance transformation" can be very handy.

Transducers and Transformers

A transducer converts power from one type to another. We can model many of them with transformers.
Transformers increase the through variable and correspondingly decrease the across variable or vice-versa.

Mechanical "Transformers" (Translational motion)

Levers

$\mathrm{N}=\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\frac{\mathrm{F}_{2}}{\mathrm{~F}_{1}}$

$$
\begin{aligned}
\mathbf{Z}_{\mathbf{e q}} & =\mathrm{N}^{2} \cdot \mathbf{Z}_{\mathbf{2}} \\
& =\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\right)^{2} \cdot \mathbf{Z}_{2}
\end{aligned}
$$

(not really this simple)

Mechanical system with circular motion (rotational)

Mechanical rotational
Through Variable:
Across Variable:
$\left\{\begin{array}{l}\omega d t \\ \frac{\omega(s)}{s}\end{array}\right.$
Dissipation element: power

$$
\begin{aligned}
P & =v \cdot T=\frac{T^{2}}{B} \\
& =\omega^{2} \cdot B
\end{aligned}
$$

Through variable energy storage:
$\mathrm{E}=\frac{1}{2} \cdot \frac{1}{\mathrm{k}} \cdot \mathrm{T}^{2}$

Moment of Inertia, J

J with friction

B or f
$\theta(\mathrm{s})=$ angular displacement ($\mathrm{rad} \cdot \mathrm{sec}$) (in freq domain)

Damper or friction

Electrical

I = current (A)
$\mathrm{V}=$ voltage (V)
Source:

$$
\square=\frac{\mathrm{d}}{\mathrm{dt}} \theta
$$

Capacitor hooked to ground

Capacitor and resistor

$\frac{1}{\frac{1}{\left(\frac{1}{\mathrm{~J} \cdot \mathrm{~s}}\right)}+\frac{1}{\left(\frac{1}{\mathrm{~B}}\right)}}$
$\frac{1}{J \cdot s+B}$

More Transducers and Transformers

Belts, chains, \& gears

$r=$ pitch radius of pulley or of gears

$\omega_{1} \mathrm{~T}_{1}$

$$
\mathrm{N}=\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}=\frac{\omega_{1}}{\omega_{2}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\text { gear tooth ratio }\left(\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}\right)
$$

Transformation one type of motion or power to another requires a Transformer

Tires, racks, \& conveyors
r = radius of wheel or pitch radius of belt pulley

$$
\mathrm{N}=\frac{1}{\mathrm{r}}=\frac{\omega}{\mathrm{v}}=\frac{\mathrm{F}}{\mathrm{~T}}
$$

Note: $\mathrm{N}=\mathrm{r}$ if the input is linear motion and output is rotational.
Do Example 6
DC Motors

$$
\mathrm{N}=\mathrm{K}=\frac{\mathrm{v}_{1}}{\omega}=\frac{\mathrm{T}_{2}}{\mathrm{i}}
$$

Fluid (hydraulic) system

Through Variable:	Fluid Across Valumetric flow rate $\left(\frac{\mathrm{m}^{3}}{\mathrm{sec}}\right)$ Variable:$\quad \mathrm{P}=\operatorname{Pressure}\left(\frac{\mathrm{N}}{\mathrm{m}^{2}}\right)$ or (Pa)

Electrical
 I = current (A)
 Sources

$\mathrm{V}=$ voltage (V)

Impedance
Dissipation element: power

$$
\begin{aligned}
P & =P \cdot Q \\
& =\frac{Q^{2}}{R_{f}}
\end{aligned}
$$

$=\mathrm{P}^{2} \cdot \mathrm{R}_{\mathrm{f}}$
Through variable energy storage:
$\mathrm{E}=\frac{1}{2} \cdot \mathrm{I} \cdot \mathrm{Q}^{2}$

Fluid Inertia

$I=\frac{M}{A^{2}}=\frac{\rho \cdot \text { length }}{A}$
Across variable energy storage:

$$
\mathrm{E}=\frac{1}{2} \cdot \mathrm{C}_{\mathrm{f}} \cdot \mathrm{P}^{2}
$$

Fluid Capacitors

Gyrators

Pistons and Turbines convert through variables to across variables \& vice versa, so there are no good electrical analogies.
Yet you can still transform an impedance from a mechanical system into the fluid system. You'll find that capacitors become inductors, inductors become capacitors and parallel swaps with series.

Piston \& Cylinder

Fluid power input

$$
\begin{aligned}
& P=\frac{F}{A} \\
& Q=A \cdot v
\end{aligned}
$$

$$
\text { fluid } Z_{\mathbf{e q}}=\frac{P}{Q}=\frac{\left(\frac{F}{A}\right)}{A \cdot v}=\frac{1}{A^{2}} \cdot \frac{F}{v}=\frac{1}{A^{2}} \cdot \frac{1}{Z_{\operatorname{tran}}}=\frac{1}{A^{2} \cdot Z_{\operatorname{tran}}}
$$

If the input is mechanical linear motion power and the output is fluid power:

$$
\text { translational mechcanical } \mathbf{Z}_{\mathbf{e q}}=\frac{v}{F}=\frac{\left(\frac{Q}{A}\right)}{A \cdot P}=\frac{1}{A^{2}} \cdot \frac{Q}{P}=\frac{1}{A^{2}} \cdot \frac{1}{\mathbf{Z}_{\text {fluid }}}=\frac{1}{A^{2} \cdot \mathbf{Z}_{\text {fluid }}}
$$

Do Example 5

Turbine or Pump

Fluid power input (turbine)

$\mathrm{T}=\mathrm{K}\left(\mathrm{P}_{\mathrm{i}}-\mathrm{P}_{\mathrm{o}}\right)$
$=\mathrm{K} \cdot \Delta \mathrm{P}$ $\mathbf{Z}_{\text {rot }}=\frac{\omega}{\mathrm{T}}=$

$$
\text { fluid } Z_{e q}=\frac{\Delta \cdot P}{\mathrm{Q}}=\frac{\left(\frac{\mathrm{T}}{\mathrm{~K}}\right)}{\mathrm{K} \cdot \omega}=\frac{1}{\mathrm{~K}^{2}} \cdot \frac{\mathrm{~T}}{\omega}=\frac{1}{\mathrm{~K}^{2}} \cdot \frac{1}{\mathrm{Z}_{\operatorname{rot}}}=\frac{1}{\mathrm{~K}^{2} \cdot \mathrm{Z}_{\operatorname{rot}}} \quad \text { (turbine) }
$$

an impedance representing the mechanical system connected to the rotating shaft.

If the input is mechanical rotational power and the output is fluid power (pump):

$$
\begin{aligned}
& \text { rotational mechanical } \mathbf{Z}_{\mathbf{e q}}=\frac{\omega}{\mathrm{T}}=\frac{\left(\frac{\mathrm{Q}}{\mathrm{~K}}\right)}{\mathrm{K} \cdot \Delta \mathrm{P}}= \frac{1}{\mathrm{~K}^{2}} \cdot \frac{\mathrm{Q}}{\Delta \mathrm{P}}=\frac{1}{\mathrm{~K}^{2}} \cdot \frac{1}{\mathbf{Z}_{\text {fluid }}}=\frac{1}{\mathrm{~K}^{2} \cdot \mathbf{Z}_{\text {fluid }}} \quad \text { (pump) } \\
& \text { Note: } \Delta \mathrm{P}=\mathrm{P}_{\mathrm{o}_{0}}-\mathrm{P}_{\mathrm{i}} \quad \text { across the pump }
\end{aligned}
$$

Example 1

Mechanical system

Mass
Circuit

Transfer function

$$
\begin{aligned}
& \frac{V_{M^{(s)}}}{V_{i n}(s)}=\frac{\frac{1}{C \cdot s+\frac{1}{R_{e q}}}}{\mathrm{~L} \cdot \mathrm{~s}+\frac{1}{\mathrm{C} \cdot \mathrm{~s}+\frac{1}{R_{\mathrm{eq}}}}} \cdot \frac{\left(\mathrm{C} \cdot \mathrm{~s}+\frac{1}{R_{e q}}\right)}{\left.\mathrm{C} \cdot \mathrm{~s}+\frac{1}{R_{e q}}\right)}=\frac{1}{\mathrm{~L} \cdot \mathrm{C} \cdot \mathrm{~s}^{2}+\frac{\mathrm{L}_{\mathrm{eq}}}{\mathrm{R}_{\mathrm{eq}}} \cdot \mathrm{~s}+1} \cdot \frac{\left(\frac{1}{\mathrm{~L} \cdot \mathrm{C}}\right)}{\left(\frac{1}{\mathrm{~L} \cdot \mathrm{C}}\right)}=\frac{\frac{1}{\mathrm{~L} \cdot \mathrm{C}}}{\mathrm{~s}^{2}+\frac{1}{\mathrm{C} \cdot \mathrm{R}_{\mathrm{eq}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}}} \\
& \frac{V_{M^{(s)}}}{\mathrm{Vel}_{\mathrm{in}}(\mathrm{~s})}=\frac{\frac{\mathrm{k}}{\mathrm{M}}}{\mathrm{~s}^{2}+\frac{\mathrm{B}}{\mathrm{eq}} \cdot \mathrm{~s}+\frac{\mathrm{k}}{\mathrm{M}}}=\frac{\frac{20 \cdot \mathrm{~N}}{2 \cdot \mathrm{~kg} \cdot \mathrm{~m}}}{\mathrm{~s}^{2}+\frac{1.6 \cdot \mathrm{~N} \cdot \mathrm{sec}}{2 \cdot \mathrm{~kg} \cdot \mathrm{~m}} \cdot \mathrm{~s}+\left(\frac{20 \cdot \mathrm{~N}}{2 \cdot \mathrm{~kg} \cdot \mathrm{~m}}\right)} \\
& =\frac{10}{s^{2}+0.8 \cdot s+10} \quad \begin{array}{l}
\text { same, } \\
\text { either way }
\end{array} \\
& \text { without units }
\end{aligned}
$$

ECE 3510 Mechanical to Electrical Examples p. 2

Example 2

Example 3

Circuit with a transformer.

ECE 3510 Mechanical to Electrical Examples p. 3

Example 5, fluids

ECE 3510 Mechanical to Electrical Examples p. 4

Example 6

Circuit with a transformer.

Circuit without a transformer.

