ECE 3510 Control System Characteristics \& Performance

The objective of a control system is to allow an input to set or control an output.
Except in very rare circumstances:
The output should behave in a stable, predictable, manner regardless of noise, disturbances, perturbations, and system parameters that change over time. The output should track the input (or the meaning of the input) smoothly and quickly, adding as little as possible to the output that was not in the input.

A GOOD Control System

1. Is Stable. At the very minimum it needs to be BIBO stable. (Often the concept of stability is enlarged into areas we will consider minimal tracking.)

Corresponding system poles

2. Tracks the input (or the meaning of the input) well.
a) Converges to steady state values set by the input with little or no error.

A pole at origin is an integrator.

b) Tracks varying inputs with little error.
i) Responds quickly (fast response with little lag and short settling time).
ii) Little or no overshoot.

$$
\% \mathrm{OS}=100 \% \cdot \mathrm{e}^{-\pi \cdot \frac{\mathrm{a}}{\mathrm{~b}}}
$$

faster, but with some overshoot

See also Nise, Fig 4.19, p199 \& earlier pages
3. Rejects disturbances

In reality, $\mathrm{C}(\mathrm{s})$ never just has a pole at zero by itself, that would slow down the system too much. Usually there will also be a nearby zero.
$\operatorname{atan}\left(\frac{-\pi}{\ln (2 \cdot \%)}\right)=38.8 \cdot \operatorname{deg}$
$\operatorname{atan}\left(\frac{-\pi}{\ln (8 \cdot \%)}\right)=51.2 \cdot \operatorname{deg}$
4. Be sufficiently insensitive to plant uncertainties and variations with time.

Generally requires more loop gain and/or integrator (pole at origin) in $\mathrm{C}(\mathrm{s})$ or $\mathrm{P}(\mathrm{s})$
5. Tolerant of noise, especially in the feedback measurements.

Generally requires less gain and/or lower frequency response (slower).

CANNOT stabilize an inherently unstable plant
Feedforward compensation (prefiltering) is most often used in conjunction with feedback to improve the feedback system response.

Feedback system

Open-loop transfer function: $\mathbf{G}(\mathrm{s})=\mathrm{k} \cdot \mathbf{C}(\mathrm{s}) \cdot \mathbf{P}(\mathrm{s}) \cdot \mathbf{F}(\mathrm{s}) \quad$ Closed-loop transfer function: $\mathbf{H}(\mathrm{s})=\frac{\mathrm{k} \cdot(\mathbf{C}(\mathrm{s}) \cdot \mathbf{P}(\mathrm{s}))}{1+\mathrm{k} \cdot \mathbf{C}(\mathrm{s}) \cdot \mathbf{P}(\mathrm{s}) \cdot \mathbf{F}(\mathrm{s})}$

Error Want this to go to zero

$$
\begin{aligned}
& \mathbf{E}(\mathrm{s})=\frac{1}{1+\mathrm{k} \cdot \mathbf{C}(\mathrm{~s}) \cdot \mathbf{P}(\mathrm{s}) \cdot \mathbf{F}(\mathrm{s})} \cdot \mathbf{R}(\mathrm{s}) \quad-\frac{\mathbf{P}(\mathrm{s}) \cdot \mathbf{F}(\mathrm{s})}{1+\mathrm{k} \cdot \mathbf{C}(\mathrm{~s}) \cdot \mathbf{P}(\mathrm{s}) \cdot \mathbf{F}(\mathrm{s})} \cdot \mathbf{D}(\mathrm{s}) \quad=\frac{1}{1+\mathrm{k} \cdot \mathbf{G}(\mathrm{~s})} \cdot \mathbf{R}(\mathrm{s}) \quad-\frac{\mathbf{P}(\mathrm{s}) \cdot \mathbf{F}(\mathrm{s})}{1+\mathrm{k} \cdot \mathbf{G}(\mathrm{~s})} \cdot \mathbf{D}(\mathrm{s})
\end{aligned}
$$

For constant input and constant disturbance

Perfect tracking of DC input:
$\mathbf{C}(\mathrm{s})$ or $\mathbf{P}(\mathrm{s})$ has a pole at the origin (integrator)

Perfect rejection of constant disturbance:

$$
\mathbf{C}(\mathrm{s}) \text { has a pole at the origin (integrator) }
$$

Note: Nise devotes an entire chapter (7) to steady-state errors from different types of inputs. Refer to that chapter to learn much more than we cover in this class. The short version is: The more integrators, the better.

ECE 3510 Routh-Hurwitz Lecture

Routh-Hurwitz Stability test
Denominator of transfer function or signal: $\quad a_{n} \cdot s^{n}+a_{n-1} \cdot s^{n-1}+a_{n-2} \cdot s^{n-2}+a_{n-3} \cdot s^{n-3} \quad \cdots \quad a_{1} \cdot s+a_{0}$
Usually of the Closed-loop transfer function denominator to test fo BIBO stability
Test denominator for poles in CRHP (RHP including imaginary axis)

1. For all poles to be in the LHP, all coefficients must be >0

For a second-order denominator, that is enough, skip the next step.
2. If all coefficients are >0 \& order >2, then:

Create Routh-Hurwitz array:

$b_{1}=\frac{a_{n-1} \cdot a_{n-2}-(2) a_{n-3}}{a_{n-1}(\hat{3}}$
$c_{1}=\frac{\mathrm{b}_{1} \cdot \mathrm{a}_{\mathrm{n}-3}-\mathrm{a}_{\mathrm{n}-1} \cdot \mathrm{~b}_{2}}{\mathrm{~b}_{1}}$
$b_{2}=\frac{\frac{(4)}{a_{n-1}} a_{n-4}-\frac{5}{a_{n}} \cdot a_{n-5}}{a_{n-1}(6)}$

$$
b_{3}=\frac{a_{n-1} \cdot a_{n-6}-a_{n} \cdot a_{n-7}}{a_{n-1}}
$$

Look at first column:
All positive $=$ All roots left of imaginary axis
If any negative or 0 , then there are poles on the Imaginary axis or in the RHP (Right-Half Plane)
Count sign reversals down the first column
Sign reversals = number of poles on the Imaginary axis or in the RHP (Right-Half Plane)
0 can be replaced by $-\varepsilon$ to see if there are any other sign reversals

Example Uses

ECE 3510 Routh-Hurwitz Lecture
The transfer functions of $\mathrm{C}(\mathrm{s})$ and $\mathrm{P}(\mathrm{s})$ are given below. In each case determine if the steady-state error will go to zero and whether disturbances will be completely rejected. Be sure to check for closed-loop stability when needed.

0 steady-state error?
a) $\mathrm{C}(\mathrm{s})=\frac{\mathrm{s}+2}{\mathrm{~s}^{2}+5 \cdot \mathrm{~s}+4} \quad \mathrm{P}(\mathrm{s})=\frac{\mathrm{s}+1}{\mathrm{~s}^{2}+5 \cdot \mathrm{~s}+15}$

$$
P(s)=\frac{s+1}{s^{2}+5 \cdot s+15}
$$

$\mathrm{e}_{\mathrm{ss}}(\infty)=0$?
no pole at zero

Reject Disturbances?

$\mathrm{e}_{\mathrm{SS}}(\infty)=0$ for disturbance?
No no pole at zero No stability test needed to answer those questions
b) $C(s)=\frac{s+5}{s^{2}+4 \cdot s+3}$
$P(s)=\frac{s+1}{s^{2}+2 \cdot s}$
Yes (Tentative answer)
No
$\mathrm{P}(\mathrm{s})$ has pole at zero
$\mathrm{C}(\mathrm{s})$ has no pole at zero

Must test for stability: Closed loop transfer function $=\frac{C(s) \cdot P(s)}{1+C(s) \cdot P(s)} \quad=\frac{N_{C}(s) \cdot N_{P}(s)}{D_{C}(s) \cdot D_{P}(s)+N_{C}(s) \cdot N_{P}(s)}$

$$
\text { Closed loop denominator }=\mathrm{D}_{\mathrm{C}^{(s)}} \cdot \mathrm{D}_{\mathrm{P}^{(s)}+\mathrm{N}_{C^{\prime}}(\mathrm{s}) \cdot \mathrm{N}_{\mathrm{P}}(\mathrm{~s})}
$$

$C(s) \cdot P(s)=\frac{s+5}{\left(s^{2}+4 \cdot s+3\right)} \cdot \frac{s+1}{\left(s^{2}+2 \cdot s\right)}$
Closed loop denominator $=\left(s^{2}+4 \cdot s+3\right) \cdot\left(s^{2}+2 \cdot s\right)+(s+5) \cdot(s+1)$
$D_{H^{(s)}}=s^{4}+6 \cdot s^{3}+12 \cdot s^{2}+12 \cdot s+5$

Routh-Hurwitz Stability test

Test denominator for poles in CRHP (RHP including imaginary axis)

1. All coefficients must be >0

For a second-order denominator, that is enough
2. Create Routh-Hurwitz array:

(RH Ex.1)	-	$\mathrm{D}_{\mathrm{H}}(\mathrm{s})=\mathrm{s}^{4}+6 \cdot \mathrm{~s}^{3}+12 \cdot \mathrm{~s}^{2}+12 \cdot \mathrm{~s}+5$			
	s^{4}	1	12	5	0
	s^{3}	6	12	0	
	s^{2}	$\frac{6 \cdot 12-1 \cdot 12}{6}=10$	$\frac{6 \cdot 5-1 \cdot 0}{6}=5$		
	s^{1}	$\frac{10 \cdot 12-6 \cdot 5}{10}=9$	$\frac{10 \cdot 0-6 \cdot 0}{10}=0$		
	s^{0}	$\frac{9 \cdot 5-10 \cdot 0}{9}=5$			
Look at first column:					
		$\mathrm{D}_{\mathrm{H}}(\mathrm{s})$ would have poles on the Imaginary axis or in the RHP (Right-Half Plane)			

Alternatively, check the actual roots

Using your calculator, find the roots of:
$0=s^{4}+6 \cdot s^{3}+12 \cdot s^{2}+12 \cdot s+5$
Roots: $\left[\begin{array}{c}-1 \\ -3.359 \\ -0.82-0.903 \cdot \mathrm{j} \\ -0.82+0.903 \cdot \mathrm{j}\end{array}\right] \quad \begin{aligned} & \text { roots all negative, stable } \\ & \text { So tentative answers above are correct }\end{aligned}$
ECE 3510
Routh-Hurwitz Lecture

ECE 3510 Routh-Hurwitz Lecture

More Routh-Hurwitz method examples

RH Ex. 2 Given a cloosed-loop denominator: $\quad D(s)=s^{4}+10 \cdot s^{3}+3 \cdot s^{2}+5 \cdot s+2 \quad$ Are all the poles in the OLHP?

RH Ex. 3

$$
\begin{aligned}
& \mathrm{C}(\mathrm{~s})=\frac{3 \cdot \mathrm{~s}^{2}+8}{\mathrm{~s}^{3}+2 \cdot \mathrm{~s}^{2}+4 \cdot \mathrm{~s}} \quad \mathrm{P}(\mathrm{~s})=\frac{2}{\mathrm{~s}^{2}+3} \quad \text { (Notice that the Plant is not inherently stable) } \\
& \begin{aligned}
\mathrm{C}(\mathrm{~s}) \cdot \mathrm{P}(\mathrm{~s})=\frac{3 \cdot \mathrm{~s}^{2}+8}{\left(\mathrm{~s}^{3}+2 \cdot \mathrm{~s}^{2}+4 \cdot \mathrm{~s}\right)} \cdot \frac{2}{\left(\mathrm{~s}^{2}+3\right)} \quad \text { Closed loop denominator } & =\left(\mathrm{s}^{3}+2 \cdot \mathrm{~s}^{2}+4 \cdot \mathrm{~s}\right) \cdot\left(\mathrm{s}^{2}+3\right)+\left(3 \cdot \mathrm{~s}^{2}+8\right) \cdot 2 \\
& =\mathrm{s}^{5}+2 \cdot \mathrm{~s}^{4}+7 \cdot \mathrm{~s}^{3}+12 \cdot \mathrm{~s}^{2}+12 \cdot \mathrm{~s}+16
\end{aligned}
\end{aligned}
$$

Routh-Hurwitz array

Doesn't make sense to progress to the next row if all you want to know is stability, but if you count above as $-\varepsilon$, this answer would come out +, indicating two problem poles
Actual roots: \(\left[\begin{array}{c}2 \cdot \mathrm{j}

-2 \cdot \mathrm{j}

-1.651

-0.175-1.547 \cdot \mathrm{j}

-0.175+1.547 \cdot \mathrm{j}\end{array}\right] \quad\)| First 2 roots are on |
| :--- |
| imaginary axis, unstable |

ECE 3510 Routh-Hurwitz Lecture p. 4

Closed-loop transfer-function denominator
a) $D(s)=s^{5}+3 \cdot s^{4}-18 \cdot s^{3}+3 \cdot s^{2}+s+2$
b) $D(s)=s^{6}+3 \cdot s^{4}+18 \cdot s^{3}+3 \cdot s^{2}+s+2$
c) $D(s)=s^{6}+3 \cdot s^{5}+18 \cdot s^{4}+3 \cdot s^{3}+s^{2}+2 \cdot s$
d) $\mathrm{D}(\mathrm{s})=\left(\mathrm{s}^{2}+2 \cdot \mathrm{~s}+5\right) \cdot\left(\mathrm{s}^{2}+4 \cdot \mathrm{~s}+4\right)$
(Example 1 in text)
e) $D(s)=\left(s^{2}-2 \cdot s+5\right) \cdot\left(s^{2}+4 \cdot s+4\right)$
(Example 2 in text)
f) $D(s)=s^{5}+4 \cdot s^{4}+2 \cdot s^{3}+6 \cdot s^{2}+2 \cdot s+1$

RH Ex. 4

s^{4}	1	2	2	0
s^{3}	4	6	1	0
s^{2}	$\frac{4 \cdot 2-1 \cdot 6}{4}=0.5$	$\frac{4 \cdot 2-1 \cdot 1}{4}=1.75$		
s^{1}	$\frac{0.5 \cdot 6-4 \cdot 1.75}{0.5}=-8$	$\frac{0.5 \cdot 1-4 \cdot 0}{0.5}=1$		
s^{0}	$\frac{-8 \cdot 1.75-0.5 \cdot 1}{-8}=1.8$	blem, some root		

Actual roots: $\left[\begin{array}{c}-3.855 \\ -0.187-0.4 \cdot \mathrm{j} \\ -0.187+0.4 \cdot \mathrm{j} \\ 0.114-1.147 \cdot \mathrm{j} \\ 0.114+1.147 \cdot \mathrm{j}\end{array}\right]$ Last two roots are in the RHP

No Not stable
RH Ex. 5 Use the Routh-Hurwitz method to determine the value range of K that will produce a stable system.
$D(s)=s^{4}+2 \cdot s^{3}+1 \cdot s^{2}+s+K \quad$ Characteristic equation of a feedback sytem.

$$
\begin{array}{c:cccc}
\mathrm{s}^{4} & 1 & 1 & \mathrm{~K} & 0 \\
\mathrm{~s}^{3} & 2 & 1 & 0 & \\
\mathrm{~s}^{2} & \frac{2 \cdot 1-1 \cdot 1}{2}=0.5 & \frac{2 \cdot \mathrm{~K}-1 \cdot 0}{2}=\mathrm{K} & \\
\mathrm{~s}^{1} & \frac{0.5 \cdot 1-2 \cdot \mathrm{~K}}{0.5}=1-4 \cdot \mathrm{~K} & 0 & & \\
\mathrm{~s}^{0} & \frac{(1-4 \cdot \mathrm{~K}) \cdot \mathrm{K}-0.5 \cdot 0}{1-4 \cdot \mathrm{~K}}=\mathrm{K} & & & \\
& & \mathrm{~K}>0 & & 0=1-4 \cdot \mathrm{~K} \\
& & \mathrm{~K}<\frac{1}{4}=0.25 \\
3510 & \text { Routh-Hurwitz Lecture } \quad \mathrm{p} .4 & & 0<\mathrm{K}<0.25
\end{array}
$$

ECE 3510 Routh-Hurwitz Lecture p. 5

RH Ex. 6 Use the Routh-Hurwitz method to determine the value range of K that will produce a stable system.
$D(s)=s^{4}+4 \cdot K \cdot s^{3}+12 \cdot s^{2}+2 \cdot K \cdot s+K$

$\mathrm{s}^{4}:$	1	12	K
$\mathrm{~s}^{3}:$	$4 \cdot \mathrm{~K}$	$2 \cdot \mathrm{~K}$	0
$\mathrm{~s}^{2}$	$\frac{4 \cdot \mathrm{~K} \cdot 12-1 \cdot 2 \cdot \mathrm{~K}}{4 \cdot \mathrm{~K}}=11.5$	$\frac{4 \cdot \mathrm{~K} \cdot \mathrm{~K}-1 \cdot 0}{4 \cdot \mathrm{~K}}=\mathrm{K}$	
$\mathrm{s}^{1}:$	$\frac{11.5 \cdot 2 \cdot \mathrm{~K}-4 \cdot \mathrm{~K} \cdot \mathrm{~K}}{11.5}=2 \cdot \mathrm{~K}-\frac{4}{11.5} \cdot \mathrm{~K}^{2}$	0	
$\mathrm{~s}^{0}$	$\frac{\left(2 \cdot \mathrm{~K}-\frac{4}{11.5} \cdot \mathrm{~K}^{2}\right) \cdot \mathrm{K}}{2 \cdot \mathrm{~K}-\frac{4}{11.5} \cdot \mathrm{~K}^{2}}=\mathrm{K}$		

$\mathrm{K}>0 \quad$ This could have been seen from the original expression
$0<2-\frac{4}{11.5} \cdot \mathrm{~K} \quad \mathrm{~K}<2 \cdot \frac{11.5}{4}=5.75$
$0<\mathrm{K}<5.75$
RH Ex. 7 Use the Routh-Hurwitz method to determine if all the poles are to the left of -5 .
$D(s)=s^{3}+44 \cdot s^{2}+320 \cdot s+648 \quad$ Characteristic equation of a feedback sytem.
Replace all occurances of s with ($s-5$)

$$
\begin{aligned}
& (s-5)^{3}+44 \cdot(s-5)^{2}+320 \cdot(s-5)+648 \\
& \left(s^{3}-15 \cdot s^{2}+75 \cdot s-125\right)+44 \cdot\left(s^{2}-10 \cdot s+25\right)+320 \cdot(s-5)+648 \\
& s^{3}-15 \cdot s^{2}+75 \cdot s-125+44 \cdot s^{2}-44 \cdot 10 \cdot s+44 \cdot 25+320 \cdot s-320 \cdot 5+648=s^{3}+29 \cdot s^{2}-45 \cdot s+23
\end{aligned}
$$

RH Ex.7b Are all the poles are to the left of -4 ?
No, this has a negative coefficient
Replace all occurances of s with (s -4)

$$
\begin{aligned}
& (s-4)^{3}+44 \cdot(s-4)^{2}+320 \cdot(s-4)+648 \\
& \left(s^{3}-12 \cdot s^{2}+48 \cdot s-64\right)+44 \cdot\left(s^{2}-8 \cdot s+16\right)+320 \cdot(s-4)+648 \\
& s^{3}-12 \cdot s^{2}+48 \cdot s-64+44 \cdot s^{2}-44 \cdot 8 \cdot s+44 \cdot 16+320 \cdot s-320 \cdot 4+648=s^{3}+32 \cdot s^{2}+16 \cdot s+8
\end{aligned}
$$

Look at first column: \quad All positive, so all roots are indeed left of -4 .

Actual roots of:
$0=s^{3}+44 \cdot s^{2}+320 \cdot s+648$

Sure enough, all roots are left of -4 , and not all left of -5
ECE 3510 Routh-Hurwitz Lecture

1. Draw a control system loop like the bottom one shown on p. 2 of my Control System Characteristics \& Performance notes. This is a more complex version of Fig 4.7 (Bodson, p.67), including gain, a feedback sensor ($\mathrm{F}(\mathrm{s}$)) and a disturbance input ($\mathrm{D}(\mathrm{s})$).
2. With $F(s)$ (or $N_{F}(s)$ and $\left.D_{F}(s)\right)$ added into the following equations, find: a) The full $Y(s)=$ Note: you may consider k as part of $\mathrm{C}(\mathrm{s})$.
b) $\mathrm{E}(\mathrm{s})$ with disturbance as zero:

Eq. 4.14
Eq. 4.19
c) $\mathrm{E}(\mathrm{s})$ with input $(\mathrm{R}(\mathrm{s}))$ as zero:

Eq. 4.22
Eq. 4.23
3. List 5 measures of a control system's quality (see p. 64) and list one or two things that can be done to achieve each.
4. The transfer functions of $C(s)$ and $P(s)$ are given below. In each case determine if the steady-state error will go to zero and whether disturbances will be completely rejected. Be sure to check for closed-loop stability when needed.
a) $\mathrm{C}(\mathrm{s})=\frac{\mathrm{s}+4}{\mathrm{~s}^{2}+3 \cdot \mathrm{~s}+2}$
$\mathrm{P}(\mathrm{s})=\frac{\mathrm{s}+1}{\mathrm{~s}^{2}+3 \cdot \mathrm{~s}}$
b) $C(s)=\frac{s+1}{s^{2}+3 \cdot s}$
$P(s)=\frac{s+4}{s^{2}+3 \cdot s+2}$
c) $\mathrm{C}(\mathrm{s})=\frac{\mathrm{s} \cdot(\mathrm{s}+6)}{\mathrm{s}^{2}+3 \cdot \mathrm{~s}+2}$

$$
\mathrm{P}(\mathrm{~s})=\frac{\mathrm{s}+8}{\mathrm{~s}^{2}+12 \cdot \mathrm{~s}}
$$

d) $\mathrm{C}(\mathrm{s})=\frac{\mathrm{s}+9}{\mathrm{~s}^{2}+3 \cdot \mathrm{~s}+2}$

$$
P(s)=\frac{s}{s+16}
$$

e) $C(s)=\frac{s+1}{s^{2}+5 \cdot s+6}$
$\mathrm{P}(\mathrm{s})=\frac{\mathrm{s}+1}{\mathrm{~s}^{2}+8 \cdot \mathrm{~s}+15}$
f) $\mathrm{C}(\mathrm{s})=\frac{\mathrm{s}+1}{\mathrm{~s}^{3}+7 \cdot \mathrm{~s}^{2}+12 \cdot \mathrm{~s}} \quad \mathrm{P}(\mathrm{s})=\frac{\mathrm{s}+1}{\mathrm{~s}+3}$
5. Problem 4.2 (p.108) in the text. Use your calculator or Matlab to find the actual roots, or use the Routh-Hurwitz method.
6. EXTRA CREDIT

Characteristic equations of feedback sytems are shown below. In each case, use the Routh-Hurwitz method to determine the value range of K that will produce a stable system. You must show your work.
a) $0=s^{4}+20 \cdot s^{3}+10 \cdot s^{2}+s+K$
b) $0=\mathrm{s}^{4}+2 \cdot \mathrm{~K} \cdot \mathrm{~s}^{3}+5 \cdot \mathrm{~s}^{2}+\mathrm{K} \cdot \mathrm{s}+\mathrm{K}$

Answers

1.\& 3. See notes and read sections 4.1-4.2 in text (Bodson).
2. a) $\mathrm{Y}(\mathrm{s})=\frac{\mathrm{P} \cdot \mathrm{C} \cdot \mathrm{R}+\mathrm{P} \cdot \mathrm{D}}{1+\mathrm{P} \cdot \mathrm{C} \cdot \mathrm{F}}=\frac{\mathrm{P} \cdot \mathrm{k} \cdot \mathrm{C} \cdot \mathrm{R}+\mathrm{P} \cdot \mathrm{D}}{1+\mathrm{P} \cdot \mathrm{k} \cdot \mathrm{C} \cdot \mathrm{F}}$

$$
\mathrm{k} \text { as part of } \mathrm{C}(\mathrm{~s}) \quad \mathrm{k} \text { separate from } \mathrm{C}(\mathrm{~s})
$$

4. a) Yes No
b) Yes Yes
c) No No
d) No Yes
e) No No
f) Yes Yes
5. a) Yes
b) No
c) No
6. EXTRA CREDIT
a) $0<\mathrm{K}<0.4975 \quad$ b) $0<\mathrm{K}<2.25$

ECE 3510 homework

