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ECE 3510  Root Locus Examples continued (Additional rules)
10. The breakaway (and arrival) points are solutions to:

all

1

s p
i all

1

s z
i

Im
= Example: G( )s

.( )s 8 ( )s 10
.( )s 1 ( )s 5

Solve:
1

s 5

1

s 1
=

1

s 8

1

s 10

( )s 1 ( )s 5
.( )s 5 ( )s 1

=
( )s 8 ( )s 10

.( )s 8 ( )s 10 3.319 Re

8.824.2 s 4

s2 .4 s 5
=

.2 s 18

s2 .18 s 80

.( ).2 s 4 s2 .18 s 80 = .( ).2 s 18 s2 .4 s 5

.2 s3 .40 s2 .232 s 320 = .2 s3 .26 s2 .62 s 90

.40 s2 .232 s 320 = .26 s2 .62 s 90

.14 s2 .170 s 410 = 0

=
170 1702 ..4 14 410

.2 14
8.824 =

170 1702 ..4 14 410
.2 14

3.319

---------------------------------------------------------------------------------------

Breakaway (and arrival) points from the real axis (σb) are also the solutions to: d

ds
G( )s = 0 where s is a real number

(on the real axis)

Why?  Because gain = k =
1

G( )s
The breakaway point will be the point between -5 and +1 with the highest gain.

That is also the point with the lowest G(s) and highest - G(s).  Either way d

ds
G( )s

Make some plots s ..,4 3.99 0

4 3 2 1 0
0

0.1

0.2

0.3

3.4 3.2 3
4.4

4.35

4.3
gain = k =

1

G( )s 3.319
G( )s

real values of s real values of s

The breakin point will be the point between -10 and -8 with the lowest gain.

Make some plots s ..,9.9 9.893 8.1

10 9.5 9 8.5 8
0

200

400

9 8.9 8.8 8.7
0.026

0.0255

0.025

gain = k =
1

G( )s G( )s

8.824

real values of s real values of s

Root Locus Examples, continued  p1



Root Locus Examples, continued  p2

Find the Break-in points for Basic Root Locus Examples, Example 11

m 2
11 G( )s =

.( )s 3 ( )s 12

( )s 6 3 n 3

=n m 1

no asymptotes

Break-away points

1

( )s 3

1

( )s 12
=

1

s 6

1

s 6

1

s 6
=

3

s 6

( )s 12 ( )s 3
.( )s 3 ( )s 12

=
( ).2 s 15

.( )s 3 ( )s 12
=

3

s 6

.( ).2 s 15 ( )s 6 = ..3 ( )s 3 ( )s 12

0 = .( ).2 s 15 ( )s 6 ..3 ( )s 3 ( )s 12

Useless solution
s2 .18 s 18 Solve: =

9 .3 7

9 .3 7

1.063

16.937 Breaks in at -16.937

Finding the jωωωω crossing point using rule 9: 

Rule 9. Phase angle of G(s) at any point s on the root locus: arg( )G( )s = arg( )N( )s arg( )D( )s =  + 180o      + 540o ...  

3. Crude servo: G( )s =
1643

..s ( )s 16.64 ( )s 53.78 Im

Like example 3 from Basic Examples

I think it crosses the imaginary axis at 29j

s .29 j G( )s =
1643

...29 j ( ).29 j 16.64 ( ).29 j 53.78

/ G( )s = =.90 deg atan
29

16.64
atan

29

53.78
178.488 deg

Re
Try 30j:

/ G( )s = =.90 deg atan
30

16.64
atan

30

53.78
180.138 deg

linear interpolation =30
180.138 180

180.138 178.488
29.916

/ G( )s = =.90 deg atan
29.916

16.64
atan

29.916

53.78
180.002 deg

close enough

Finding the jωωωω crossing gain using rule 8: 

Gain:
1

G( )s
= =

..29.916 29.9162 16.642 29.9162 53.782

1643
38

Root Locus Examples, continued  p2



Root Locus Examples, continued  p3

Find the Break-in points for Basic Root Locus Examples, Example 7

7. G( )s =
.( )s 5 ( )s 8

s2 .6 s 13
NOT

Break-away points
1

( )s 5

1

( )s 8
=

1

s 3 .2 j

1

s 3 .2 j
=

.2 s 6

s2 .6 s 13

1

s2 .6 s 13
Note the way these poles are expressed

Guess 6.3 Use this guess in all but the closest poles and zeroes

1

s 3 .2 j

1

s 3 .2 j

.2 ( )6.3 6

s2 .6 ( )6.3 13
= 0 Solutions:

2.57

6.3 guess was good

Find the Departure angles from complex poles 
for Basic Root Locus Examples, Example 7

answer
114.34o 

=atan
2

8 3
10.305 deg

=atan
2

5 3
14.036 deg 10.31o 

14.04o 

atan
2

8 3
atan

2

5 3
.90 deg θ =  +180o 90o 

=atan
2

8 3
atan

2

5 3
.90 deg .180 deg 245.659 deg

=atan
2

8 3
atan

2

5 3
.90 deg .180 deg 114.341 deg

better answer

Finding the jωωωω crossing point using rule 9: 

G( )s
.( )s 5 ( )s 8

s2 .6 s 13

Try: s .5 j / G( )s = =arg( )G( ).5 j 171.193 deg

Try: s .4.5 j / G( )s = =arg( )G( )s 176.375 deg =arg( )G( )s .360 deg 183.625 deg

linear interpolation =4.5 .183.625 180

183.625 171.193
( )5 4.5 4.646

Try: s .4.646 j / G( )s = =arg( )G( )s 179.838 deg

linear interpolation =4.5 .183.625 180

183.625 179.838
( )4.646 4.5 4.64

Try: s .4.64 j / G( )s = =arg( )G( )s 179.991 deg close enough

Finding the jωωωω crossing gain using rule 8: 

Gain:
1

G( )s
=

( ).4.64 j 2 .6 ( ).4.64 j 13
.( ).4.64 j 5 ( ).4.64 j 8

= =
13 ( )4.64 2 2

( ).6 ( )4.64 2

.4.642 52 4.642 82

0.462 to be stable: k > 0.462

Root Locus Examples, continued  p3



Root Locus Examples, continued  p4

Find the Break-in points for Basic Root Locus Examples, Example 9

9 G( )s =
s 12

..s2 .4 s 13 ( )s 1 ( )s 5

Break-away points

1

( )s 12
=

1

( )s 2 .3 j

1

( )s 2 .3 j

1

( )s 1

1

( )s 5
=

( )s 2 .3 j ( )s 2 .3 j

s2 .4 s 13

1

( )s 1

1

( )s 5

1

( )s 12
=

.2 s 4

s2 .4 s 13

1

( )s 1

1

( )s 5

Guess 4 Use this guess in all but the closest poles and zeroes

1

( )4 12
=

.2 s 4

s2 .4 s 13

1

( )4 1

1

( )s 5

0 =
.2 s 4

s2 .4 s 13

1

( )s 5

1

( )4 1

1

( )4 12
Solve:

2.105

3.648

0.912

0 =
.2 s 4

s2 .4 s 13

1

( )s 5

1

( )3.648 1

1

( )3.648 12
Solve:

1.091

3.727

0.332

Close to actual 
answer of 3.712

Find the Departure angles from complex poles for Basic Root Locus Examples, Example 9

=atan
3

5 2
45 deg

answer -46.74o 

108.4o =.180 deg atan
3

1
108.435 deg

16.7o 45o 

=atan
3

12 2
16.699 deg

90o 

atan
3

12 2
atan

3

5 2
.180 deg atan

3

1
.90 deg θ =  +180o 

θ = =.180 deg .16.699 deg .45 deg .108.435 deg .90 deg 46.736 deg

Root Locus Examples, continued  p4



ECE 3510  Root Locus Departure and Arrival Angles

G( )s
1

..s2 .4 s 13 ( )s 1 ( )s 5
=

1
...( )s 2 .3 j ( )s 2 .3 j ( )s 1 ( )s 5

s 2 .3 j

=
1

..( )s 2 .3 j ( )s 1 ( )s 5
5.5556 10 3 + 0.0111i

For pole at -2 + 3j 

=.180 deg arg .5.5556 10 3 0.0111i 63.412 deg

=.180 deg atan
3

1
108.435 deg

45o

=.180 deg atan
3

1
.90 deg .45 deg 243.435 deg + θ = + 180o

=180 243.4 63.4 deg
90o

If you leave out 180o (not recommended)

=atan
3

1
.90 deg .45 deg 63.435 deg + θ = 0o, + 360o

θ = .63.435 deg

G( )s
s 7

..s2 .4 s 13 ( )s 1 ( )s 5

=atan
3

5
30.964 deg

32.5o

s 2 .3 j

30.96o =
s 7

..( )s 2 .3 j ( )s 1 ( )s 5
0.0611 + 0.0389i

=.180 deg arg( )0.0611 0.0389i 32.483 deg

=.180 deg atan
3

1
.90 deg .45 deg atan

3

5
212.471 deg + θ = + 180o

=180 212.5 32.5 deg



ECE 3510  Root Locus Departure and Arrival Angles  p2
G( )s

s2 .2 s 2

..s2 .4 s 13 ( )s 1 ( )s 5

=.180 deg atan
2

3
146.31 deg

.45 deg =.180 deg atan
3

1
108.435 deg

=.180 deg atan
4

3
126.87 deg

.90 deg

=.180 deg atan
3

1
.90 deg .45 deg .180 deg atan

2

3
.180 deg atan

4

3
29.745 deg + θ = + 180o

=( )180 29.75 150.25 deg

=atan
2

3
33.69 deg

=atan
1

6
9.462 deg

=atan
1

2
26.565 deg

.90 deg

=atan
4

3
53.13 deg

=atan
1

2
atan

2

3
atan

1

6
atan

4

3
.90 deg 34.533 deg - θ = + 180o ECE 3510  Root Locus 

Departure and Arrival 
Angles  p2

=( )180 34.5 145.5 deg



ECE 3510 Root Locus Design Examples
Recall the simple crude servo from lab 1

G( )s
1643

..s ( )s 16.64 ( )s 53.78

σ = =
0 16.64 53.78

3
23.473

PI To eliminate steady-state error (for constant inputs)
& perfect rejection of constant disturbances

Note: The DC motor has a pole at zero and should do zero the steady- 
state error by itself, but nonlinearities prevent it from doing it well.

G c( )s .1643
..s ( )s 16.64 ( )s 53.78

s 0.1

s
Add pole at 0 and zero at -0.1

k p

k i

s

C( )s = k p

k i

s
= .k p

s
k i

k p

s

LAG An alternative is a Lag Compensator, 
here with a pole at -0.1 and a zero at -0.5

G c( )s= .1643
..s ( )s 16.64 ( )s 53.78

s 0.5

s 0.1

This works very much like the PI 
controller, but without the need for 
active components.

The area 
near the 
origin

Root Locus Design Examples   p.1



Root Locus Design Example   p.2
Let's keep the pole at 0 and zero at -0.1 for elimination 
of steady-state errors and rejection of disturbances

CL poles at p 7.06 .7.06 j
k = =

1

G( )7.06 .7.06 j
3.417

and 7.06 .7.06 j

At gain of 3.44
=atan

Im( )p

Re( )p 53.78
8.593 deg

135o
8.6o 36.4o

=atan
Im( )p

Re( )p 16.64
36.388 deg

This is a point in the root locus because:

=.8.6 deg .36.4 deg .135 deg .135 deg .135 deg 180 deg

PD or PID To Improve the dynamic response

Want to double the speed

Want poles to move to: p 14 .14 j
14 .14 j

=atan
Im( )p

Re( )p 53.78
19.389 deg

135o
19.4o 79.3o

Unfortunately, this point in NOT on the root locus =atan
Im( )p

Re( )p 16.64
79.321 deg

=atan
Im( )p

Re( )p 53.78
atan

Im( )p

Re( )p 16.64
.135 deg 233.71 deg

Maybe we could add a zero so that it's angle is:

θ z
.233.71 deg .180 deg =θ z 53.71 deg

x = =.Im( )p
1

tan θ z
10.28

z Re( )p .Im( )p
1

tan θ z
135o

19.4o 79.3o
=z 24.28

x
24.28

G c( )s .1643
..s ( )s 16.64 ( )s 53.78

.( )s 0.1 ( )s 24.28

s

k = =
1

G( )14 .14 j
7.24 is the required gain

Root Locus Design Examples   p.2



Root Locus Design Examples   p.3
We have designed a our compensation with the following:

A pole at the origin

A zero at -0.1

A zero at -24.28

Gain of 0.418

Find the kp, ki, & kd of a PID controller.

k p

k i

s
C( )s = k p

k i

s
.s k d =

.s k p

s

k i

s

.s2 k d

s
.k d s

=
.s k p k i

.s2 k d

s
= .k d

s2 .
k p

k d
s

k i

k d

s

gain = k d 0.418
.( )s 0.1 ( )s 24.28 = s2 .24.38 s 2.43

= s2 .
k p

k d
s

k i

k d

k i

k d
= 2.43 k i

.k d 2.43 =k i 1.016

k p

k d
= 24.38 k p

.k d 24.38 =k p 10.191 Notice: =
k i

k p
0.1 ~ 0.1

Notice that the proportional gain is actually almost 3 times higher than it was before. =.3 3.44 10.32

LEAD An alternative to the differentiator is a Lead Compensator.

Instead of a single zero with: =θ z 53.71 deg

How about a zero with θ z
.70 deg And a pole with θ p

.70 deg .53.71 deg

=θ p 16.29 deg
x = =.Im( )p

1

tan θ z
5.096

z Re( )p .Im( )p
1

tan θ z
=z 19.096

16.3o 70o

xp = =.Im( )p
1

tan θ p
47.907

p Re( )p .Im( )p
1

tan θ p
=p 61.907

This example is actually a PI-Lead controller

Root Locus Design Examples   p.3



Root Locus Design Examples   p.4
Problems with the differentiator

1. Tries to differentiate a step input into an impulse -- not likely.
You'll have to consider how your differentiator will actually handle a step input and how your amplifier will saturate.

If the differentiator and amplifiers saturate in such a way the the "area under the curve" approximates the impulse 
"area under the curve", then this may not be such a problem.  It may not be as fast as predicted from the linear 
model, but it may be as fast as the system limits allow.  (Pedal-to-the-metal.)   

2. It's a high-pass filter and can accentuate noise.  
This is actually common to all compensators that speed up the response.

3. Requires active components and a power supply to build.  
Usually no big deal since your amplifier (source of gain) does too.

4. Is never perfect (always has higher-order poles), but then neither is anything else.  Especially in mechanical systems, 
these poles usually are well beyond where they could cause problems. 

Alternatives:

1. Lag-Lead or PI-Lead compensation.  This eliminates the differentiator, but it is still a high-pass filter that can 
be a noise problem and it could still saturate the amplifier if the input changes too rapidly.

Be sure to check for saturation problems.

2. Place the differentiator in the feedback loop.  The output of the plant is much less likely to be a step or to 
change so rapidly that it causes problems. 

k pDifferentiation in the feedback

P( )s

k i

s

.k d s Note: The differential signal is often taken from a 
motor tachometer when the output is a position.  
Then you don't need a separate differentiator circuit, 
just a separate gain for that signal.

Find the kp, ki, & kd of this controller.

.F( )s C( )s = .k p
k i

s
1 .k d s = ...k p k d

s
k i

k p

s

1

k d
s = ..k p k d

.s
k i

k p
s

1

k d

s

C( )s F( )s
For our example: = .0.418

.( )s 0.1 ( )s 24.28

s

k d
1

24.38
=k d 0.041

k p
0.418

k d
=k p 10.191

k i
.k p 0.1 =k i 1.019

In this case the open-loop zero in the feedback loop IS NOT in the 
closed-loop.  This turns out to make the step response slower than 
predicted by the second-order approximation, but try a simulation, 
you may be able to use significantly more gain with no more 
overshoot.  The differentiator in this position inhibits overshoot.

Root Locus Design Examples   p.4



PI and PID Design Examples   p.5
Ex.2, from S16 Exam 3 Consider the transfer function: G( )s

s 5

.( )s 1 s2 .4 s 20
a) Find the departure angle from a complex pole.

Angles:
from pole at -1 θ p1

.180 deg atan
4

1
=θ p1 104.036 deg

from pole at -2-4j θ p2
.90 deg =θ p2 90 deg

from zero at -5 θ z atan
4

3
=θ z 53.13 deg .39.09 deg

θ = =.53.13 deg .90 deg .104.036 deg .180 deg 39.094 deg

b) Draw a root locus plot.  Calculate the centroid 
and accurately draw the departure angle.

53.13 .104.04 deg
σ 5 1 2 2

2
=σ 0

c) Is there any decent place to locate the closed-loop poles? NO

d) You would like to place your closed-loop poles 
to get a settling time of 1/2 sec and 0.656% 
overshoot.  Add the simplest possible 
compensator to accomplish this and calculate 
what the compensator should be.  

90

2% settling time: T s =
4

a
a = =

4

1

2

8

Overshoot: OS = e
.π a

b %OS = .100% e
.π a

b

a

b
=

ln( )OS

π
= =

ln( )0.00656

π
1.6 b = =

8

1.6
5

Pole should be at -8 + 5j
170.46

Angles:

from pole at -1 =.180 deg atan
5

7
144.462 deg

.120.96 deg
144.46

from pole at -2+4j =.180 deg atan
1

6
170.538 deg

from pole at -2-4j =.180 deg atan
9

6
123.69 deg

from zero at -5 =.180 deg atan
5

3
120.964 deg

123.69
=.144.462 deg .170.538 deg .123.69 deg .120.964 deg 317.726 deg

θ z
.317.726 deg .180 deg =θ z 137.726 deg

=tan( ).137.726 deg .90 deg 1.1 =
x

5
x .5 1.1 =8 x 2.5 C( )s = s 2.5

G c( )s
.( )s 5 ( )s 2.5

.( )s 1 s2 .4 s 20
s 8 .5 j Check: =arg

.( )s 5 ( )s 2.5

.( )s 1 s2 .4 s 20
180 deg

PI and PID Design Examples   p.5



PI and PID Design Examples   p.6
e) What is the gain?

k
1

G c( )s
= =

.( )8 .5 j 1 ( )8 .5 j 2 .4 ( )8 .5 j 20
.( )8 .5 j 5 ( )8 .5 j 2.5

13.059

f) What is the steady-state error for a unit-step input?

G c( )s
.( )s 5 ( )s 2.5

.( )s 1 s2 .4 s 20
G c( )0 =

.( )0 5 ( )0 2.5

.( )0 1 02 .4 0 20
= =

.( )5 ( )2.5
.( )1 ( )20

0.625

=G c( )0 0.625 e step = =
1

1 .k 0.625
10.91 %

g) If this steady-state error was a little too big, what would be 
the very simplest way to reduce it?

turn up the gain

Ex.3, from S17 Exam 3
m 0

a) Sketch the root locus plot of, G( )s
100

..( )s 25 ( )s 40 ( )s 70 n 3

σ C = =
25 40 70

n m
45 =n m 3 so asymptotes are at + 60o & 180o  

The gain is set at 452, so that one 
of the closed-loop poles is at,

s 24.48 .27.2 j

Further calculations yield:
Settling time: .0.163 sec
% overshoot: .5.92 %
Steady-state error to a unit-step input: 60.8%

b) You wish to increase the frequency of ringing to 40 rad/sec 
without changing the % overshoot at all.  Where should the 
closed-loop pole be located?

a

b
= =

24.48

27.2
0.9 new b 40 new a = =.0.9 b 36

New location: s 36 .40 j

c) Add a LEAD compensator so that you will be able to place 
the closed-loop pole at the location found in b).  
Add the new zero at -30.  Find the location of the new pole.

Angles:

from pole at -25

θ 25
.180 deg atan

40

36 25
=θ 25 105.376 deg

from pole at -40

θ 40 atan
40

40 36
=θ 40 84.289 deg

from pole at -70

θ 70 atan
40

70 36
=θ 70 49.635 deg

from new zero at -30

θ 30
.180 deg atan

40

36 30
=θ 30 98.531 deg

PI and PID Design Examples   p.6



θ 25 θ 40 θ 70 θ 30 θ p = .180 deg PI and PID Design Examples   p.7

θ p
.180 deg θ 25 θ 40 θ 70 θ 30

=θ p 39.23 deg

p 36
40

tan θ p
=p 84.993 = 85

G c( )s
.100 ( )s 30

...( )s 25 ( )s 40 ( )s 70 ( )s 85

Check: =arg
.100 ( )s 30

...( )s 25 ( )s 40 ( )s 70 ( )s 85
179.996 deg

d) With the compensator in place and a closed-loop 
pole at the location desired in part b)

i) What is the gain?
k

1

G c( )s
=k 1369

ii) What is the 2% settling time? Use the second-order approximation.

T s = =
4

36
0.111 sec

iii) What is the steady-state error to a unit-step input?

G c( )0 = =
.100 ( )0 30

...( )0 25 ( )0 40 ( )0 70 ( )0 85
5.042 10 4 e step = =

1

1 .k G c( )0
59.161 %

e) Add another compensator: C 2( )s
s 2

s
and maintain the gain of part d)

i) What is this type of compensator called and what is its purpose?

PI, used to eliminate steady-state error

ii) Calculate what you need to to show that this compensator achieved its purpose.   

G c( )s .
.100 ( )s 30

...( )s 25 ( )s 40 ( )s 70 ( )s 85

( )s 2

s

G c( )0 = ∞ e step =
1

1 .k ∞
= .0 %

f) With both compensators in place, is there possibility for improvement (quicker settling time speed 
and/or lower ringing)? If yes, what would be the simplest thing to do?  Justify your answer.

A quick sketch of the new root-locus 
shows that simply decreasing the 
gain would improve the system

move 
down 
here

PI and PID Design Examples   p.7



ECE 3510    Root  Locus Design Crib Sheet  A.Stolp
3/11/09,
3/8/10

Using 2nd-order approximation:
N( )s

( )s a 2 b2
=

N( )s

s2 ..2 a s a2 b2
=

N( )s

s2 ...2 ζ ω n s ω n
2

ω n
2

= a2 b2 ω n = natural frequency

.ζ ω n = a

ζ =
a

ω n
=

a

a2 b2

= damping factor ζ = sin atan
a

b

Overshoot: OS = e

.π a

b %OS = .100% e

.π a

b a

b
=

ln( )OS

π

angle of constant damping line: .90 deg atan
a

b

2% settling time: T s =
4

a
=

4
.ζ ω n

Time of first peak: T p =
π
b

Static error constant (position): K p = lim
0s

..K C( )s G( )s e step( )∞ = e step =
1

1 K p
Nise p378

Lag compensation improves Kp, Kv and Ka by
z c

p c
IE: K pc ~ .K puc

z c

p c

Searching along a line of constant damping:

Try s values, choosing b: s = .a

b
b .b j Test: arg( )G( )s +180o or Re( )G( )s >> Im( )G( )s

Linear interpolation: new b = b 1
.

b 2 b 1

Im G s 2 Im G s 1
Im G s 1

Can also try "a" values with slight modification of the above.

Weird forms from Nise book:

σ d = a %OS = .100% e

.ζ π

1 ζ
2

p195

ω d = b ζ =
ln( )OS

π2
( )ln( )OS 2

T p =
π

.ω n 1 ζ2
p195 p194

p378 Static error constant (ramp): K v = lim
0s

...s K C( )s G( )s e ramp =
1

K v(velocity)

Static error constant (parabola): K a = lim
0s

...s2 K C( )s G( )s e parabola =
1

K a(acceleration)

ECE 3510    Root  Locus Design Crib Sheet   p1  


