
ECE 3510    Phase-Locked Loops a

Phase-Locked Loops are a bit of a distraction right here, but we need to cover them for next lab.  (6 & 7)

Need parts and breadboard for this lab. PLL IC is expensive and prone to static & handling damage.

See lab 6 handout PAY ATTENTION to warnings in the lab.

Modulation

AM = Amplitude Modulation v(t)

multiplier
x mod( )t

x mod( )t AM signal out t

includes a 
DC offset

cos .ω c t

"carrier", ωc is the "carrier frequency" Simple

Demodulation
A simple rectifier circuit Returns the modulation signal

v(t)

t

And a coupling capacitor can remove the DC
detector

v(t)
FM = Frequency Modulation

x mod( )t

x mod( )t VCO FM signal out t

Voltage-Controlled Oscillator

ωc is the carrier frequency and is the output when x mod = 0

ω c
.k vco x mod( )t is the output frequency

So if: cos .ω c t is the carrier, I guess cos .ω c
.k vco x mod( )t t must be the output...  WRONG!

actually: cos( )θ( )t

where: θ( )t = dtω is the REAL relationship between θ and ω 

= .ω t for the unmodulated (steady-state sinusoid) case

so if you want to modulate the frequency:

θ( )t = dtω c
.k vco x mod( )t = .ω c t dt.k vco x mod( )t

And, the VCO becomes
k vco

s
if you just care about θ( )t and not the carrier

PM = Phase Modulation Phase-Locked Loops  p1



One way to demodulate FM is with a Phase-Locked-Loop. Phase-Locked Loops  p2

x mod( )t modulation

Signal out
Signal in φ( )t

Phase detector Filter Voltage-Controlled 
      Oscillator

y vco( )t
y( )t

same frequency and 
phase as the input

To analyze the Phase-Locked-Loop (PLL).

Signal out
Signal in φ( )t

Phase detector Filter Voltage-Controlled 
      Oscillator

y vco( )t
y( )t

The same loop if you only care about what happens to θ( )t
Voltage-Controlled 
      OscillatorPhase detector Filter

Signal in Signal out

θ in( )t k pd θ in θ out C( )s θ out( )tk vco

s

G( )s = ..k pd
k vco

s
C( )s = .

k pll

s
C( )s where k pll = .k pd k vco

Closed-loop: H( )s =

.
k pll

s
C( )s

1 .
k pll

s
C( )s

=
.k pll C( )s

s .k pll C( )s

At first glance, that filter, C(s), doesn't look necessary, but many phase detectors don't put out a nice DC.

Our phase detector in the lab is a good example:

This DEFINITELY 
has to be filtered

For filter, C(s), design, see Bodson, section 4.5.4 and PLL labs.

Your challenge in the lab will be to get a good demodulation and a stable system.

PLLs can also be used for frequency synthesis and motor speed control, etc.. Phase-Locked Loops  p2



ECE 3510 Unconventional Root Locus A. Stolp 3/17/20

A regular root locus plot is very useful if you want to see how the positions of the closed-loop poles of a feedback system 
are affected by simple proportional gain in the system.  But... what if you want to see how these poles are affected by 
some other variable in the system, like the filter time-constant in the Phase-Locked-Loop lab?  Could we use some of the 
same concepts to see the affects of some other variable?  The answer is yes, we just have to hold the gain constant and 
rearrange things a bit.  An "unconventional root-locus plot" is like a regular root locus plot except that the gain is held 
constant and the plot shows how the closed-loop poles move as the result of changing some variable other than gain.

To create an unconventional root locus plot:
1. Determine the gain factor if it can be adjusted, and make it part of the open-loop transfer function, G(s).  

Hold it constant at some number.

2. Determine the denominator of the closed-loop transfer function, H(s).  Let's call it DH(s).

3. Rearrange DH(s) into this form: D'( )s .x N'( )s where x is the variable for which you want to draw the root locus.

Notice that x occupies exactly the same position  the gain would normally occupy.  Normal: D G( )s .k N G( )s

Note: If you cannot rearrange DH(s) into this form, then you cannot 
use this method to create an root locus plot for the variable x. 

Now: D'( )s .x N'( )s

4. Now simply draw a root locus as though D'(s) was the open-loop denominator and N'(s) was the open-loop numerator.

Ex.1 Sketch the unconventional root-locus plot for the open-loop transfer function below.  The 
root-locus should be plotted for an increasing a. The gain will be held constant at 3

G( )s =
( )s .2 a

.( )s 5 ( )s a

The denominator of the closed-loop transfer function:

.( )s 5 ( )s a .3 ( )s .2 a = s2 .s a .8 s .11 a

= s2 .8 s .s a .11 a = .s ( )s 8 .a ( )s 11

D'( )s = .s ( )s 8 N'( )s = ( )s 11

poles at 0 and 8 zero at 11

Ex.2 Sketch the unconventional root-locus plot for the open-loop transfer function below.  The 
root-locus should be plotted for an increasing g. 

G( )s =
..k s ( ).g s 1

.( )s .4 g ( )s 5
k = 2 and is constant

The denominator of 
the closed-loop 
transfer function:

.( )s .4 g ( )s 5 ..2 s ( ).g s 1

s2 .5 s ..4 g s .20 g ..2 g s2 .2 s

s2 .7 s ..2 g s2 ..4 g s .20 g
Place CL poles here

s ~ -2.1.s ( )s 7 .g .2 s2 .4 s 20

D'( )s .g N'( )s

.s ( )s 7 ..g 2 s2 .2 s 10
a 1 b = =10 12 3

The arrow points to a desirable place for the closed-loop poles for minimal ringing and the shortest settling time.  
To find the value
      of g needed: 0 = .s ( )s 7 ..2 g s2 .2 s 10 solve for g =

s2 .7 s

.2 s2 .4 s 20

if s 2.1 g = =
s2 .7 s

.2 s2 .4 s 20
0.504

ECE 3510  Unconventional Root Locus



Ex.3 From E3, S12 Sketch the unconventional root-locus plot for the open-loop transfer function 
below.  The root-locus should be plotted for an increasing m. 

G( )s =
.k ( )s 30

.( ).m s s 10 ( )s 4
k = 2 and is fixed

The denominator of the closed-loop transfer function:

.( ).m s s 10 ( )s 4 .2 ( )s 30

.m s2 ..4 m s s2 .6 s 40 .2 ( )s 30

.m s2 ..4 m s s2 .6 s 40 .2 s 60

.m s2 ..4 m s s2 .4 s 20

D'( )s .m N'( )s

s2 .4 s 20 .m s2 .4 s

a 2

b 20 22 =b 4

b) Can you place a closed-loop pole on the real axis at -2?  
If yes, find the value of m needed to place the pole at this location.  
If no, indicate what you think the best point on the real axis is and 
find the value of m needed to place the pole at that location.

0 = s2 .4 s 20 .m s2 .4 s

solve for m =
s2 .4 s 20

s2 .4 s
if s 2 m = =

s2 .4 s 20

s2 .4 s
8

Ex.4 From E3, S13 Sketch the unconventional root-locus plot for the open-loop transfer function 
below.  The root-locus should be plotted for an increasing x. 

G( )s =
.k ( ).5 ( )s .2 x 6

.s ( ).x s .2 ( )s .2 x
k = 2 and is fixed

The denominator of the closed-loop transfer function:

.s ( ).x s .2 ( )s .2 x .2 ( ).5 ( )s .2 x 6

.x s2 .2 s2 ..4 x s .10 ( )s .2 x 12

.x s2 .2 s2 ..4 x s .10 s .20 x 12

.2 s2 .10 s 12 .x s2 ..4 x s .20 x

.2 s2 .5 s 6 .x s2 .4 s 20

D'( )s .x N'( )s

..2 ( )s 6 ( )s 1 .x s2 .4 s 20

a 2

b 20 22 =b 4

b) Can you place a closed-loop pole on the real axis at -4?  
If yes, find the value of x needed to place the pole at this location.  
If no, indicate what you think the best point on the real axis is and 
find the value of x needed to place the pole at that location.

0 = ..2 ( )s 6 ( )s 1 .x s2 .4 s 20

solve for x =
( )..2 ( )s 6 ( )s 1

s2 .4 s 20
if s 4 x = =

( )..2 ( )s 6 ( )s 1

s2 .4 s 20
1

ECE 3510  Unconventional Root Locus   p2



ECE 3510
Implementation (Physical Realization) of Feedback System Components and Compensators

gain A.Stolp 
2/24/09, 
rev, 

One way to implement this:
x or reference 
input

Is the instrumentation amplifier: Feedback 
signal

Feedback 
signal

V o = ..1 .2
R 2

R 1

R 4

R 3
V 2 V 1

K = .1 .2
R 2

R 1

R 4

R 3

x or reference 
input

To build active compensators, use this basic circuit and then consult Table 9.10 (p.555 in 3rd ed. p.504 in 6th) in the Nise 
textbook.

R+ Should be approximately the parallel combination of the 

DC impedances of Z1 and Z2.  

This is a good way to minimize the effects of the Op-amp's bias currents. 

Beware!  This is an inverting circuit.  You will have to follow it with another inverter.

Or... you could just swap the inputs to the instrumentation amplifier, if you are using one.

The resistors used in Op-amp circuits should be 100Ω to 1MΩ, and preferably 1kΩ to 100kΩ. 

These Op-amp circuits require + and - power supplies.

To build passive compensators, consult Table 9.11 ( p.558 in 3rd ed. p.506 in 6th) in the Nise textbook.

ECE 3510   Physical Realization Notes  p1



Table similar to table 9.10 ( p.555 in 3rd ed. p.504 in 6th) in the Nise textbook.

Function Z1 Z2 C(s)

Amplifier k p =
R 1

R 2(Proportional Gain) R 1 R 2

Integrator k i

s
=

1
..R C s

= .1
.R C

1

sR C

.k d s = ..R C s
Differentiator

C R

k p
k i

s
= .k p

s
k i

k p

s
= .

R 1

R 2

s
1
.R 2 C

sPI Controller
R 1 R 2 C

C

PD Controller k p
.k d s = .k p 1 .

k d

k p
s = .R 2 C

R 2
R 1

C 1
C 2

PID Controller k p
k i

s
.s k d =

R 2

R 1

C 1

C 2

1
.R 1 C 2

s
..R 2 C 1 s

R 2
R 1

.s2 k d
.s k p k i

s
=

..R 2 C 1 s2 .
R 2

R 1

C 1

C 2
s

1
.R 1 C 2

s

C 1 C 2

Lag or Lead 
Compensator

.
C 1

C 2

s
1
.R 1 C 1

s
1
.R 2 C 2R 1 R 2

Lag: .R 1 C 1 < .R 2 C 2

Lead: .R 1 C 1 > .R 2 C 2ECE 3510   Physical Realization Notes  p2



PID Design Example Implementation   p.1

C( )s = .0.418
.( )s 0.1 ( )s 24.28

s
= .0.418

s2 .24.38s 2.48

s
=

.0.418s2 .10.19s 1.037

s
k d

.0.418sec

=
.k d s2 .k p s k i

s
k p 10.19

k i
1.016

secUsing the PID design from table 9.10 (p.555 in 3rd ed. p.504 in 6th) in Nise:
This could be implemented with:

C( )s =
R 2

R 1

C 1

C 2

..R 2 C 1 s

1
.R 1 C 2

s

=

..R 2 C 1 s2 .
R 2

R 1

C 1

C 2
s

1
.R 1 C 2

s

If we use an instrumentation amplifier with a gain of, say 3, and invert the two inputs to "fix" the inversion above, then: 

.R 2 C 1 = =
k d

3
0.139sec

R 2

R 1

C 1

C 2
= =

10.19

3
3.397

1
.R 1 C 2

= =
k i

3
0.339sec 1

There are 4 component values to select and only 3 coefficients to match, so arbitrarily select 1 component.

Try C 1
.0.1 µF R 2

.0.139sec

C 1
=R 2 1.39 MΩ too high

Try C 1
.10 µF R 2

.0.139sec

C 1
=R 2 13.9 kΩ Use R 2

.14 kΩ

Now
R 2

R 1

C 1

C 2
= 3.397 And

1
.R 1 C 2

=
0.339

sec
So, C 2 =

sec
.0.339R 1

Combining: =
.14 kΩ

R 1

..10 µF .0.339R 1

sec
3.397 = 0

Solve: R 1

3.397 3.3972 .4
..C 1 0.339R 2

sec

.2
.C 1 0.339

sec

=R 1 997.927 kΩ Use R 1
.1 MΩ

Let   R+ = 1MΩ

C 2
sec

.0.339R 1
=C 2 2.95 µF Use C 2

.3 µF

Test: =.R 2 C 1 0.14 sec =
R 2

R 1

C 1

C 2
3.347 =

1
.R 1 C 2

0.333 sec 1 Close enough

PID Design Example Implementation   p.1



PID Design Example Implementation   p.2
Instrumentation amp gain: K inst 3 k d

.0.418sec k p 10.19 k i
1.016

sec

.R 2 C 1 = k' d

k d

3

R 2

R 1

C 1

C 2
= k' p

10.19

3

1
.R 1 C 2

= k' i

k i

3

=k' d 0.139 sec =k' p 3.397 =k' i 0.339sec 1

For standard capacitor values from =C 1
0

0.01 µF to =C 1
32

82 µF R 2
i

k' d

C 1
iCombining equations above

R 2

R 1

C 1

C 2
= k' p =

R 2

R 1

C 1

1
.k' i R 1

=
R 2

R 1

.C 1
.k' i R 1 OR R 2

..C 1 k' i R 1
2 .k p R 1

= 0

Rearrange: ..C 1 k' i R 1
2 .k' p R 1 R 2 = 0 And solve: R 1

i

k' p k' p
2 .4 ..C 1

i
k' i R 2

i

.2 .C 1
i
k' i

Finally: C 2
i

1
.k' i R 1

i

Possible solutions
C 1

i

µF
0.12
0.15
0.18

0.22
0.33
0.39
0.47

0.56
0.68
0.82

1

1.2
1.5
1.8
2.2

3.3
3.9
4.7
5.6

6.8
8.2
10
12

15
18
22
33

39
47
56
68

82

R 2
i

kΩ
1161.11
928.89
774.07

633.33
422.22
357.26
296.45

248.81
204.9

169.92
139.33

116.11
92.89
77.41
63.33

42.22
35.73
29.65
24.88

20.49
16.99
13.93
11.61

9.29
7.74
6.33
4.22

3.57
2.96
2.49
2.05

1.7

R 1
i

kΩ
83236
66589
55491

45402
30268
25611
21252

17836
14689
12181
9988

8324
6659
5549
4540

3027
2561
2125
1784

1469
1218
999
832

666
555
454
303

256
213
178
147

122

C 2
i

µF
0.035
0.044
0.053

0.065
0.098
0.115
0.139

0.166
0.201
0.242
0.296

0.355
0.443
0.532
0.65

0.976
1.153
1.389
1.655

2.01
2.424
2.956
3.547

4.434
5.321
6.504
9.755

11.529
13.894
16.555
20.102

24.241PID Design Example Implementation   p.2




