ECE 3510 Exam 2 Information

You may add whatever you want to this page.
Sinusoidal responses, effects of poles \& zeros, etc. Find: $|\mathbf{H}(\mathrm{j} \cdot \omega)|$ and $\underline{L} \underline{\mathbf{H}}(\mathrm{j} \omega)$
Steady-state AC analysis to get $\quad \mathrm{y}_{\mathrm{ss}}(\mathrm{t}) \quad \mathbf{Y}(\omega)=\mathbf{X}(\omega) \cdot \mathbf{H}(\mathrm{j} \cdot \omega)$
Control system characteristics and the objectives of a "good" control system.
Stable
Tracking fast smooth minimum error (often measured in steady state)
Reject disturbances
Insensitive to plant variations
Tolerant of noise
Poles on the 45° line (4% overshoot $\& \zeta=0.707$). Know regions where $\zeta>$ or <0.7071.

Elimination of DC steady-state error, p. 61-63.
1 Closed-loop system stable
AND $2 \mathrm{C}(\mathrm{s})$ or $\mathrm{P}(\mathrm{s})$ has pole @ 0
AND 3 C(s) and P(s) Nozero @ 0

Rejection of constant (DC) disturbances, p. 63-65.
1 Closed-loop system stable
AND 2 C(s) has pole @ 0
OR 3 P(s) has zero @ 0 But bad for DC response

For all the roots of a polynomial to be in the LHP, all of the coefficients must be greater than 0 . (This is sufficient for a second-order polynomial.)

Root - Locus Plots

a) Main rules

1. Root-locus plots are symmetric about the real axis.
2. On the real axis, spaces left of an odd number of O-L poles and zeros are always part of the locus.
(Essentially, every other space on the real axis (counting leftward) is part of the plot.)
3. Each O-L pole originates ($\mathrm{k}=0$) one branch. (n)

Each O-L zero terminates ($\mathrm{k}=\infty$) one branch. (m)
All remaining branches go to ∞. ($\mathrm{n}-\mathrm{m}$)
These remaining branches approach asymptotes as they go to ∞.
4. The origin of the asymptotes is the centroid.

5. The angles of the asymptotes

n - m	angles (degrees)			
2	90	270		
3	60	180	300	
4	45	135	225	

6. The angles of departure (and arrival) of the locus are almost always:
b) Additional rules.

Gain at any point on the root locus: $\quad k=\frac{1}{|G(s)|}$
Phase angle of $G(s)$ at
any point on the root locus: $\arg (G(s))=\arg (N(s))-\arg (D(s))= \pm 180^{\circ}, \pm 540^{\circ}, \ldots$
The breakaway/in points are also solutions to: $\quad \sum_{\text {all }} \frac{1}{\left(s+-p_{i}\right)}=\sum_{\text {all }} \frac{1}{\left(s+-z_{i}\right)}$
Departure angles from complex poles:
Example. 180-90-153.4+135=71.(deg

Transformers
Equivalent impedance in primary: $\quad \mathbf{Z}_{\mathbf{e q}}=\mathrm{N}^{2} \cdot \mathbf{Z}_{\mathbf{2}}=\left(\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\right)^{2} \cdot \mathbf{Z}_{\mathbf{2}}$

$\omega_{2} \mathrm{~T}_{2}$

$\omega_{1} \mathrm{~T}_{1}$

$$
\mathrm{N}=\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}=\frac{\omega_{1}}{\omega_{2}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\text { gear tooth ratio }\left(\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}\right)
$$

Tires, racks, \& conveyors
$r=$ radius of wheel or pitch radius of pinion gear

$$
\mathrm{N}=\frac{1}{\mathrm{r}}=\frac{\omega}{\mathrm{v}}=\frac{\mathrm{F}}{\mathrm{~T}}
$$

Note: $\mathrm{N}=\mathrm{r}$ if the input is linear motion and output is rotational.
DC Motors

$$
=\left(\frac{1}{\mathrm{r}}\right)^{2} \cdot \mathbf{Z}_{2}
$$

$$
\mathrm{N}=\mathrm{K}=\frac{\mathrm{v}_{1}}{\omega}=\frac{\mathrm{T}_{2}}{\mathrm{i}}
$$

