This sheet and the Information sheets from Exams $1 \& 2$ are the only reference materials allowed at exam. Bring this page. You may add whatever you want to this sheet (both sides).

To create an unconventional root locus plot:

1. Determine the gain factor if it can be adjusted, and make it part of the open-loop transfer function, $\mathrm{G}(\mathrm{s})$. Hold it constant at some number.
2. Determine the denominator of the closed-loop transfer function, $\mathrm{H}(\mathrm{s})$. Let's call it $\mathrm{D}_{\mathrm{H}}(\mathrm{s})$.
3. Rearrange $\mathrm{D}_{\mathrm{H}}(\mathrm{s})$ into this form: $\mathrm{D}^{\prime}(\mathrm{s})+\mathrm{x} \cdot \mathrm{N}^{\prime}(\mathrm{s})$ where x is the variable for which you want to draw the root locus. Notice that x occupies exactly the same position the gain would normally occupy. Normal: $\mathrm{D}_{\mathrm{G}}(\mathrm{s})+\mathrm{k} \cdot \mathrm{N}_{\mathrm{G}}(\mathrm{s})$ Note: If you cannot rearrange $\mathrm{D}_{\mathrm{H}}(\mathrm{s})$ into this form, then you cannot Now: $\mathrm{D}^{\prime}(\mathrm{s})+\mathrm{x} \cdot \mathrm{N}^{\prime}(\mathrm{s})$ use this method to create an root locus plot for the variable x .
4. Now simply draw a root locus as though $\mathrm{D}^{\prime}(\mathrm{s})$ was the open-loop denominator and $\mathrm{N}^{\prime}(\mathrm{s})$ was the open-loop numerator.

Root Locus Design

PI To eliminate steady-state error (for constant inputs) \& perfect rejection of constant disturbances Add pole at 0 and zero at close by

LAG An alternative is a Lag Compensator, with a pole near the origin and a zero a little farther away.
PD or PID To Improve the dynamic response, add a zero to affect angles.
LEAD An alternative to the differentiator is a Lead Compensator with a zero and a pole much farther left.

Root Locus Design Crib Sheet

Using 2nd-order approximation: $\frac{\mathrm{N}(\mathrm{s})}{(\mathrm{s}+\mathrm{a})^{2}+\mathrm{b}^{2}}=\frac{\mathrm{N}(\mathrm{s})}{\mathrm{s}^{2}+2 \cdot \mathrm{a} \cdot \mathrm{s}+\mathrm{a}^{2}+\mathrm{b}^{2}}=\frac{\mathrm{N}(\mathrm{s})}{\mathrm{s}^{2}+2 \cdot \zeta \cdot \omega_{\mathrm{n}} \cdot \mathrm{s}+\omega_{\mathrm{n}}{ }^{2}}$
$\omega_{\mathrm{n}}{ }^{2}=\mathrm{a}^{2}+\mathrm{b}^{2} \quad \omega_{\mathrm{n}}=$ natural frequency

$$
\zeta \cdot \omega_{\mathrm{n}}=\mathrm{a}
$$

$\zeta=\frac{\mathrm{a}}{\omega_{\mathrm{n}}}=\frac{\mathrm{a}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}=$ damping factor

$$
\zeta=\sin \left(\operatorname{atan}\left(\frac{\mathbf{a}}{\mathrm{b}}\right)\right)
$$

$\begin{array}{ll}\text { Overshoot: } & O S=e^{-\pi \cdot \frac{a}{b}} \\ 2 \% \text { settling time: } & T_{S}=\frac{4}{a}=\frac{4}{\zeta \cdot \omega_{n}}\end{array}$

$$
\% \mathrm{OS}=100 \% \cdot \mathrm{e}^{-\pi \cdot \frac{\mathrm{a}}{\mathrm{~b}}} \quad-\zeta \cdot \pi \quad \frac{\mathrm{a}}{\mathrm{~b}}=\frac{\ln (\mathrm{OS})}{-\pi}
$$ $\% \mathrm{OS}=100 \% \cdot \mathrm{e}^{\frac{-\zeta \cdot \pi}{\sqrt{1-\zeta^{2}}}} \quad \zeta=\frac{-\pi}{\sqrt{\mathrm{ln}(\mathrm{OS})}}$

Weird forms from Nise book
Static error constant (position): $\quad \mathrm{K}_{\mathrm{p}}=\lim _{\mathrm{s} \rightarrow 0} \mathrm{~K} \cdot \mathrm{C}(\mathrm{s}) \cdot \mathrm{G}(\mathrm{s})$

$$
\mathrm{e}_{\text {step }}(\infty)=\mathrm{e}_{\text {step }}=\frac{1}{1+\mathrm{K}_{\mathrm{p}}}
$$

$$
\text { Lag compensation improves } \mathrm{K}_{\mathrm{p}}, \mathrm{~K}_{\mathrm{v}} \text { and } \mathrm{K}_{\mathrm{a}} \text { by } \frac{\mathrm{z}_{\mathrm{c}}}{\mathrm{p}_{\mathrm{c}}} \quad \mathrm{IE}: \mathrm{K}_{\mathrm{pc}} \simeq \mathrm{~K}_{\mathrm{puc}} \cdot \frac{\mathrm{z}_{\mathrm{c}}}{\mathrm{p}_{\mathrm{c}}}
$$

angle of constant damping line: $90 \cdot \operatorname{deg}+\operatorname{atan}\left(\frac{\mathrm{a}}{\mathrm{b}}\right)$

Bode Plots

$\begin{aligned} & \text { Sample } \\ & \text { transfer } \\ & \text { function: }\end{aligned} \quad P(s)=K \cdot \frac{\left(s+z_{1}\right) \cdot\left(s+z_{2}\right)}{s \cdot\left(s+p_{1}\right) \cdot\left(s+p_{2}\right)^{2}}$
Replace all s's with blanks: $P\left(n_{-}\right)=K \cdot \frac{\left(-+\mathrm{z}_{1}\right) \cdot\left(-+\mathrm{z}_{2}\right)}{-\cdot\left(-+\mathrm{p}_{1}\right) \cdot\left(-+\mathrm{p}_{2}\right) \cdot\left(-+\mathrm{p}_{2}\right)}$

$$
\text { Initial magnitude }=K \cdot \frac{\mathrm{z}_{1} \cdot \mathrm{z}_{2}}{\left(\mathrm{j} \cdot \omega_{\text {start }}\right) \cdot \mathrm{p}_{1} \cdot\left(\mathrm{p}_{2}\right) \cdot\left(\mathrm{p}_{2}\right)}
$$

$$
\omega^{\prime} \mathrm{s} \text { in num }-->+20 \mathrm{~dB} / \mathrm{dec} \text { each }, \quad j=>90^{\circ}, \quad=\Rightarrow+180^{\circ}
$$

$$
\omega^{\prime} \mathrm{s} \text { in den }-->-20 \mathrm{~dB} / \mathrm{dec} \text { each }, \quad \mathrm{j}=>-90^{\circ},-=>-180^{\circ}
$$

Cross out each pole or zero in turn \& replace with j ω

$$
K \cdot \frac{\left(-+z_{1}\right) \cdot\left(-+z_{2}\right)}{(j \omega) \cdot\left(j \omega+X_{1}\right) \cdot\left(-+p_{2}\right) \cdot\left(-+p_{2}\right)}
$$

zeros increase the phase angle --> + 90deg
poles decrease the phase angle --> -90deg
Draw a smooth line through the bode plots to estimate the actual magnitude and phase.
Actual magnitude: $\begin{aligned} & -3 \mathrm{~dB} \text { at single poles } \\ & +3 \mathrm{~dB} \text { at single zeros }\end{aligned}$
-6 dB at double poles
+6 dB at double zeros
etc..

Magnitude effects extend about 1 decade fore and aft.

Angle effects extend about 1.5 decade fore and aft. It is helpful to draw a line from 1 decade before to 1 decade after.

$$
\begin{aligned}
(s+a)^{2}+b^{2} & =s^{2}+2 \cdot a \cdot s+a^{2}+b^{2} \\
& =s^{2}+2 \cdot \zeta \cdot \omega_{n} \cdot s+\omega_{n}^{2}
\end{aligned}
$$

natural
frequency $\omega_{n}=\sqrt{a^{2}+b^{2}}$
$\underset{\text { factor }}{\text { damping }} \quad \zeta=\frac{\mathrm{a}}{\omega_{\mathrm{n}}}$
\max at approx $\omega_{\mathrm{n}}, \frac{1}{2 \cdot \zeta}$
in $\mathrm{dB}: 20 \cdot \log \left(\frac{1}{2 \cdot \zeta}\right)$

