ECE 3510 Final Exam Information

Feedback in Linear Amplifiers

This sheet and the Information sheets from Exams 1-3 are the only reference materials allowed at exam. Bring this page. You may add whatever you want to this sheet (both sides).

Gain reduction and stabilization. Trade for other improvements. $\quad A_{f}=\frac{A_{o}}{1+A_{o} \cdot B}$
Bandwidth Extension
Op-amp compensation and resulting bandwidth
Input and Output Impedances For voltage amp with voltage feedback: $\mathrm{Z}_{\text {in }}$ Depends on how feedback is implemented
$\mathrm{Z}_{\text {out }}$ Decrease, usually by $\quad\left(1+\mathrm{A}_{\mathrm{o}} \cdot \mathrm{B}\right)$

Reduce distortion, especially distortion caused by nonlinear gains
Reduce amplifier noise. The later the noise is introcuce in the amplifier, the greater the reduction.

Discrete Signals, Systems and z-transforms

Finite-length signals have all poles at zero
$(|\mathrm{p}|)^{\mathrm{k}} \cdot \cos \left(\theta_{\mathrm{p}} \cdot \mathrm{k}\right) \quad \frac{\mathrm{z} \cdot\left(\mathrm{z}-|\mathrm{p}| \cdot \cos \left(\theta_{\mathrm{p}}\right)\right)}{\mathrm{z}^{2}-2 \cdot|\mathrm{p}| \cdot \cos \left(\theta_{\mathrm{p}}\right) \cdot \mathrm{z}+(|\mathrm{p}|)^{2}}$
$(|\mathrm{p}|)^{\mathrm{k}} \cdot \sin \left(\theta_{\mathrm{p}} \cdot \mathrm{k}\right)$

$$
F(z)=\sum_{k=0}^{\infty} f(k) \cdot z^{-k}
$$

$\underline{f(k)}$
$\delta(\mathrm{k})$
$\mathrm{u}(\mathrm{k})$ $\frac{\mathrm{z}}{\mathrm{z}-1}$
p^{k}
$\frac{z}{z-p}$
$\frac{z \cdot\left(|p| \cdot \sin \left(\theta_{p}\right)\right)}{z^{2}-2 \cdot|p| \cdot \cos \left(\theta_{p}\right) \cdot z+(|p|)^{2}}$

Damping factor $\zeta=\frac{-\ln (|\mathrm{p}|)}{\sqrt{\ln (|\mathrm{p}|)^{2}-\theta_{\mathrm{p}}{ }^{2}}}$
Time constant: $\tau=-\frac{1}{\ln (|p|)}$

$(|\mathrm{p}|)^{\mathrm{k}} \cdot \cos \left(\theta_{\mathrm{p}} \cdot \mathrm{k}\right)$
$\frac{z \cdot(z-a)}{z^{2}-2 \cdot a \cdot z+\left(a^{2}+b^{2}\right)}$
$(|\mathrm{p}|)^{\mathrm{k}} \cdot \sin \left(\theta_{\mathrm{p}} \cdot \mathrm{k}\right)$
$\frac{z \cdot b}{z^{2}-2 \cdot a \cdot z+\left(a^{2}+b^{2}\right)}$
Settling time: $\quad T_{\mathrm{S}}=4 \cdot \tau$

> Inverse z-transforms (partial fractions \& long division)

$$
\text { Divide by } z \text { first: } \frac{F(z)}{z}
$$

Properties of the z-transform linear
Right-shift $=$ delay $=$ multiply by $\quad z^{-1}=\frac{1}{z}$
Left-shift = advance = multiply by
Initial value $=\mathrm{f}(0)=\mathbf{F}(\infty) \quad$ Final value $(\mathrm{DC})=\mathrm{f}(\infty)=(\mathrm{z}-1) \cdot \mathbf{F}(\mathrm{z})$
Signals are bounded if all poles in inside unit circle, no double poles on unit circle
Converge to 0 if all poles inside unit circle. Converge to a non-zero value if a single pole is at 1
Discrete-time systems, FIR (all poles at zero), IIR (some poles not at zero)
BIBO Stability, all poles inside unit circle.
Integration
$\mathbf{H}(\mathrm{z})=\frac{\mathrm{z}}{\mathrm{z}-1}$
Differentiation $\mathbf{H}(\mathrm{z})=\frac{\mathrm{z}-1}{\mathrm{z}}$
Difference equations, Right-shift = delay = $\mathrm{D}=$ multiply by $\quad \mathrm{z}^{-1}=\frac{1}{\mathrm{z}}$
Step \& Sinusoidal responses, effects of poles \& zeros, etc.
DC gain $=\mathbf{H}(1) \quad$ sinusoidal: $\quad \mathbf{H}\left(\mathrm{e}^{\mathrm{j} \cdot \Omega} \mathrm{o}\right)=|\mathbf{H}| \underline{\theta}_{\mathrm{H}} \quad$ multiply magnitudes and add angles
Same Feedback system as in continuous-time and Root locus works the same but is interpreted very differently.

