1. Draw a control system loop like the bottom one shown on p. 2 of my Control System Characteristics \& Performance notes. This is a more complex version of Fig 4.7 (Bodson, p.67), including gain, a feedback sensor ( $\mathrm{F}(\mathrm{s}$ ) ) and a disturbance input ( $\mathrm{D}(\mathrm{s})$ ).
2. With $\mathrm{F}(\mathrm{s})$ (or $\mathrm{N}_{\mathrm{F}}(\mathrm{s})$ and $\mathrm{D}_{\mathrm{F}}(\mathrm{s})$ ) added into the following equations, find: a) The full $\mathrm{Y}(\mathrm{s})=$ Note: you may consider k as part of $\mathrm{C}(\mathrm{s})$.
b) $\mathrm{E}(\mathrm{s})$ with disturbance as zero: Eq. 4.14

Eq. 4.19
c) $\mathrm{E}(\mathrm{s})$ with input $(\mathrm{R}(\mathrm{s})$ ) as zero:

Eq. 4.22
Eq. 4.23
3. List 5 measures of a control system's quality (see p. 64) and list one or two things that can be done to achieve each.
4. The transfer functions of $C(s)$ and $P(s)$ are given below. In each case determine if the steady-state error will go to zero and whether disturbances will be completely rejected. Be sure to check for closed-loop stability when needed.
a) $C(s)=\frac{s+4}{s^{2}+3 \cdot s+2}$
$P(s)=\frac{s+1}{s^{2}+3 \cdot s}$
b) $C(s)=\frac{s+1}{s^{2}+3 \cdot s}$
$P(s)=\frac{s+4}{s^{2}+3 \cdot s+2}$
c) $\mathrm{C}(\mathrm{s})=\frac{\mathrm{s} \cdot(\mathrm{s}+6)}{\mathrm{s}^{2}+3 \cdot \mathrm{~s}+2}$
$P(s)=\frac{s+8}{s^{2}+12 \cdot s}$
d) $\mathrm{C}(\mathrm{s})=\frac{\mathrm{s}+9}{\mathrm{~s}^{2}+3 \cdot \mathrm{~s}+2}$

$$
P(s)=\frac{s}{s+16}
$$

e) $C(s)=\frac{s+1}{s^{2}+5 \cdot s+6}$
$P(s)=\frac{s+1}{s^{2}+8 \cdot s+15}$
f) $C(s)=\frac{s+1}{s^{3}+7 \cdot s^{2}+12 \cdot s}$

$$
P(s)=\frac{s+1}{s+3}
$$

5. Problem 4.2 (p.108) in the text. Use your calculator or Matlab to find the actual roots, or use the Routh-Hurwitz method.

## 6. EXTRA CREDIT

Characteristic equations of feedback sytems are shown below. In each case, use the Routh-Hurwitz method to determine the value range of $K$ that will produce a stable system. You must show your work.
a) $0=s^{4}+20 \cdot s^{3}+10 \cdot s^{2}+s+K$
b) $0=\mathrm{s}^{4}+2 \cdot \mathrm{~K} \cdot \mathrm{~s}^{3}+5 \cdot \mathrm{~s}^{2}+\mathrm{K} \cdot \mathrm{s}+\mathrm{K}$

## Answers

1.\& 3. See notes and read sections 4.1-4.2 in text (Bodson).
2. a) $\mathrm{Y}(\mathrm{s})=\frac{\mathrm{P} \cdot \mathrm{C} \cdot \mathrm{R}+\mathrm{P} \cdot \mathrm{D}}{1+\mathrm{P} \cdot \mathrm{C} \cdot \mathrm{F}}=\frac{\mathrm{P} \cdot \mathrm{k} \cdot \mathrm{C} \cdot \mathrm{R}+\mathrm{P} \cdot \mathrm{D}}{1+\mathrm{P} \cdot \mathrm{k} \cdot \mathrm{C} \cdot \mathrm{F}}$
k as part of $\mathrm{C}(\mathrm{s}) \quad \mathrm{k}$ separate from $\mathrm{C}(\mathrm{s})$

c) Eq. $4.15 \frac{-\mathrm{N}_{\mathrm{F}^{(0)}} \cdot \mathrm{N}_{\mathrm{P}^{(0)}} \cdot \mathrm{D}_{\mathrm{C}^{(0)}}}{\mathrm{D}_{\mathrm{F}^{(0)}} \cdot \mathrm{D}_{\mathrm{P}^{(0)}} \cdot \mathrm{D}_{\mathrm{C}^{(0)}}+\mathrm{N}_{\mathrm{F}^{(0)}} \cdot \mathrm{N}_{\mathrm{P}}(0) \cdot \mathrm{N}_{\mathrm{C}^{(0)}}}$
4. a) Yes No
b) Yes Yes
c) No No
d) No Yes
e) No No
f) Yes Yes
5. a) Yes
b) No
c) No
6. EXTRA CREDIT
a) $0<K<0.4975$
b) $0<K<2.25$

