ECE 3510 homework # 10

- 1. Draw a basic control system loop such as that shown in Fig 4.7 (Bodson), show all the items listed on p. 59 plus a feedback sensor labeled F(s) and a disturbance input.
- 2. Add F(s) or $n_f(s)$ and $d_f(s)$ into the following equations: full Y(s) =

With disturbance as zero:Eq. 4.5Eq. 4.7Eq. 4.10With input (R(s)) as zero:Eq. 4.13Eq. 4.15

- 3. List 5 measures of a control system's quality (see p. 59-60) and list one or two things that can be done to achieve each.
- 4. The transfer functions of C(s) and P(s) are given below. In each case determine if the steady-state error will go to zero and whether disturbances will be completely rejected. Be sure to check for closed-loop stability when needed.

a)
$$C(s) = \frac{s+4}{s^2+3\cdot s+2}$$
 $P(s) = \frac{s+1}{s^2+3\cdot s}$ b) $C(s) = \frac{s+1}{s^2+3\cdot s}$ $P(s) = \frac{s+4}{s^2+3\cdot s+2}$

- c) $C(s) = \frac{s \cdot (s+6)}{s^2 + 3 \cdot s + 2}$ $P(s) = \frac{s+8}{s^2 + 12 \cdot s}$ d) $C(s) = \frac{s+9}{s^2 + 3 \cdot s + 2}$ $P(s) = \frac{s}{s+16}$
- e) $C(s) = \frac{s+1}{s^2+5\cdot s+6}$ $P(s) = \frac{s+1}{s^2+8\cdot s+15}$ f) $C(s) = \frac{s+1}{s^3+7\cdot s^2+12\cdot s}$ $P(s) = \frac{s+1}{s+3}$
- 5. Problem 4.2 (p.98) in the text. Use your calculator or Matlab to find the actual roots, or use the Routh-Hurwitz method.

6. EXTRA CREDIT

Characteristic equations of feedback sytems are shown below. In each case, use the Routh-Hurwitz method to determine the value range of K that will produce a stable system. You must show your work.

a)
$$0 = s^4 + 20 \cdot s^3 + 10 \cdot s^2 + s + K$$

b) $0 = s^4 + 2 \cdot K \cdot s^3 + 5 \cdot s^2 + K \cdot s + K$

<u>Answers</u>

1., 2., 3. Read sections 4.1 - 4.2 in text (Bodson).				$Y(s) = \frac{P \cdot C \cdot R + P \cdot T}{1 + P \cdot C \cdot F}$	$\underline{\mathbf{D}}_{1}$
4. a) Yes No		b) Yes	Yes		
c) No No		d) No	Yes		
e) No No		f) Yes	Yes		
5. a) Yes	b) No	(c) No		
6. EXTRA CREDIT	a) 0 < K	< 0.4975	5	b) 0 < K < 2.25	