

- 2. Problem 5.3 in the text.
 - a) The system whose Bode plots are given at left is stable in closed-loop.
 Find its gain, phase, and delay margins. Show your work on the drawings.

b) Describe the behavior of the closed-loop system of part (a) if the open-loop gain is increased to a value close to the maximum value given by the gain margin. In particular, what can you say about the locations of the poles of the closed-loop system?

c) Consider an open-loop stable system which is such that the magnitude of its frequency response, including the gain factor k, is less than 1 for all ω (|kG(s)| < 1). Can you determine whether the closed-loop system is stable with only that information? If yes, show how.

3. Problem 5.13 b & new c & d (p.149) in the text.

ECE 3510 homework Bd4 p3

b) Bode plots of the open-loop transfer function of a feedback system are shown below, with the detail from 1 to 10 rad/sec shown on the left. For this system:

• How much can the open-loop gain be changed (increased and/or decreased) before the closed-loop system becomes unstable ?

• What is a rough estimate of the phase margin of the feedback system? Show on the graph how the results are obtained. The numerical results do not have to be precise.

• How much time delay can there be in feedback system before the phase margin disappears.

c) For the system of part (a), give the steady-state response of the open-loop system an input $x(t) = 4\cos(10t)$. express the answer in the time-domain.

d) Give the steady-state response of the closed-loop system for the same input. Hint: closed loop output is: $\begin{array}{c} \text{input} \cdot \frac{G(10 \cdot j)}{1 + G(10 \cdot j)} \end{array}$

ECE 3510 homework Bd4 p4

- Like problem 5.9a (p.147) in the Bodson text.
 - a) Give the gain margin, the phase margin and the delay margin of the system whose Bode plots are shown at right (the plots are for the open-loop transfer function and the closed-loop transfer function is assumed to be stable).

Answers

1.	GM	[<u>~</u>	25∙dB	PM <u>-</u>	<u>·</u> 12	0·deg	$DM := 600 \cdot r$	ns					
2.	a)	GM	<u>~</u> 21⋅dB	PN	<u>и </u>	50∙deg	DM := 2	2.6·sec	c) \	Yes, it must be stal	/ closed-loop		
	b)	The system will have a transient ring at about 10 rad/sec.transfer function, Bode gain margin or NyquisTwo poles of the closed loop system will be close to $\pm 10j$. $N=0, P=0, Z=0$											
3.	b) (c) 2	Gain may be increased by $\geq 2dB$ and reduced by $\geq 4.4dB$.PM $\geq 13 \cdot deg$ DM $\geq 36 \cdot ms$ $2 \cdot cos(10 \cdot t + 158 \cdot deg)$ d) $3.5 \cdot cos(10 \cdot t + 140 \cdot deg)$ DM $\geq 36 \cdot ms$											
4.	a)	GM	<u>~</u> 30·dB	PM	<u>~</u> 4	0·deg	DM <u>~</u> 50·m	18					
5.	a) 3	3.6∙d	eg 36	∙deg	36	$0 \cdot \deg 30$	600∙deg	b) 0.573	s∙deg	5.73 ⋅ deg	57.3·deg	573∙deg	
6.	a) A b) A	A stra A neo	aight line of gative slopir	negative na line wit	slop h a s	e, ωD, where slope of ωD.	D is the time Since the fre	e delay. quencv ir	ncrea	ases bv a factor of	10 each dec	ade. so would the	

b) A negative sloping line with a slope of ωD . the freq Since $F = m \cdot a = m \cdot \frac{d^2}{dt^2} x$ downward slope of the line.

7. Any system with mass where a force is the input and position is the "output".

Bd4 p4

ECE 3510 homework Bd4 p5

5. A system has a delay of D = 0.01 sec How many degrees of phase does this represent at:

a)
$$f := 1 \cdot Hz$$

 $f := 100 \cdot Hz$
b) $\omega := 1 \cdot \frac{rad}{sec}$
 $\omega := 100 \cdot \frac{rad}{sec}$
 $\omega := 100 \cdot \frac{rad}{sec}$
 $\omega := 1000 \cdot \frac{rad}{sec}$

6. a) If the phase response of a pure time delay were plotted on linear phase vs. linear frequency plot, what would be the shape of the curve?

b) If the phase response of a pure time delay were plotted on linear phase vs. logarithmic frequency plot, what would be the shape of the curve?

7. In section 5.3.9 of Bodson's book, he discusses using a lead controller to stabilize a system (plant) represented by a double integrator. Give two or more examples of real systems that are essentially double integrators.