Name	ECE 3510	homework	RL4	Due: S	at, 3/2/24	
 A root - locus is sketched at right. The open - loop transfer function has one zero 	o at $s = -1$ and two	poles at $s = 1 \pm j$	i.		lm	b
G(s) = a) Find the departure angle from the complex	pole 1 + j.		/	\frown	\mathbf{h}	
			<u>+</u>	<u>+</u> _2 + ⊖	Re	3
b) It looks like the root-locus crosses the $j\omega$ as	kis at 2			$\overline{}$		

- c) Regardless of what you found in part b, continue to assume that the root-locus crosses the $j\omega$ axis at 2. Give the range of gain k for which the system is closed-loop stable.
- 2. A root locus is sketched at right.

$$\mathbf{G}(s) = \frac{3 \cdot (s+2)}{s \cdot (s+5) \cdot \left(s^2 + 6 \cdot s + 25\right)}$$

a) Find the departure angle from the complex pole -3 \pm 4j .

ECE 3510 homework RL4 p2

3. Problem 4.13 Sketch the root-locus for the following problem. Do not calculate the range of gain for stability, the $j\omega$ axis crossings, or the break-away points from the real axis. However, give the angles of departure from the complex poles. There is a zero at s = 0 and a zero at s = -2. There are poles at $s = \pm j$ and $s = \pm 2j$.

4. a) Nise 3rd ed., Ch.8, problem 4.

- b) Also find the point where the root locus crosses the imaginary axis.
- c) Find the range of gain for which the system is "stable".
- d) Find the arrival angle at the top zero (departure of top pole in 4th Ed.).

0

0