\qquad

1. Choice of gain. Each root-locus plot below shows a number of closed-loop pole locations labeled "a", "b", "c", etc. Each plot has at least two poles. In answering the questions below consider all the closed-loop poles, not just the pole at the labeled location. That is, consider where the other pole(s) are when the gain places the labeled pole at the labeled location. Use a 2nd order approximation in all cases and neglect the partial-fraction coefficients of the poles
i) List the closed-loop pole locations (labeled "a", "b", "c", etc.) in order of gain factor, smallest to largest.
ii) List the closed-loop pole locations in order of speed of response (measured as the time to get within 4.4\% of the final step resonse). List them slowest to fastest.
iii) List the closed-loop pole locations which would result in a step response with absolutely no overshoot.
iv) List the closed-loop pole locations (not listed in part b) in order of \% overshoot. List them least to most.
v) List the closed-loop pole locations in order of steady-state error to a step input. List them worst to best.
(most error to least)
a) i)
ii)
iii)
iv)
v)

b) i)
ii)
iii)

i)
ii)
iii)
iv)
v)

Answers

Problem 2 on back ==>

1. a) i) b, e, c, d, a
ii) b, e, c, a, d
OR b, e, a, c, d
iii) b, e, c
iv) d, a
v) all will result in $\mathrm{e}_{\mathrm{ss}}(\infty)=0$ because of open-loop pole at origin. If that were not so then list in order of gain.
b) i) g, j, k, h, i, f
ii) f, g, j, k, h, i
iii) g, j, k, h,
iv) i, f
v) same as i)
c) i) c, d, e, a, b
ii) c, d, e, b, a
iii) b, c
iv) a, e, d
v) all will result in $\mathrm{e}_{\mathrm{ss}}(\infty)=0$ because of open-loop pole at origin. If that were not so then list in order of gain.
2. a) 102300
b) 11.14%
c) $\mathrm{K}<715000$
3. Nise 3rd \& 4th: Ch.8, problem 46. 5th ed.: Ch.8, prob 55, 6th: Ch.8, p 57. Read sec 4.6 in Nise book Modify eq. 4.42 to: $\quad T_{\mathrm{s}}=\frac{4}{\zeta \cdot \omega_{\mathrm{n}}}=\frac{4}{|\mathrm{a}|}$

$$
\text { Modify eq. } 4.38 \text { (all ed.) to: } \% \mathrm{OS}=\mathrm{e}^{-}
$$

The system of this problem:

a) Find K to yield a settling time of 0.1 second.

If you find that more than one value of K will work, choose the highest K . Usually this results in the best steady-state error. In this case that should not theoretically matter because of the motor's pole at 0 , but in reality, it still will.
b) What is the resulting overshoot?
c) What is the range of K that keeps the system stable?

