1. Like problem 6.4 in the text. Sketch the time function $x(k)$ that you would associate with the following poles. Only a sketch is required, but be as precise as possible. You may wish to use Matlab or a spreadsheet to plot these.
a) $p_{1}=0.3$ and,
$p_{2}=0.9$
b) $\mathrm{p}_{1}=1$,
$p_{2}=-1$
c)
$p_{1}=e^{j \cdot \frac{\pi}{6}}$,
$p_{2}=e^{-j \cdot \frac{\pi}{6}}$
d) $\mathrm{p}_{1}=0.9 \cdot \mathrm{j}$,
$p_{2}=-0.9 \cdot j$
2. See the back of this page.
3. Problem 6.1 in the Bodson text.

Find $x(0)$ if the z-transform of $x(k)$ is:
a) $X(z)=\frac{a \cdot z-1}{z-1}$
b) $X(z)=\frac{z}{z^{2}-a \cdot z+a^{2}}$
4. Problem 6.7 in the text.

Answers

1. Actual signals may have different magnitudes and/or phase angles. You can't tell those things from the pole locations.
a)
$\mathrm{p}_{1}=0.3$
$p_{2}=0.9$

OR

Or many others, depending on relative magnitudes
b)

Or many others, depending on relative magnitudes
c)

d)

3. a) a
b) 0
4. (6.7)
a)
$\frac{\text { Bounded }}{\text { yes }}$
$\frac{\text { Converges }}{\text { yes }} \quad \frac{x(\infty)}{0}$
b)
yes
yes
0 vanishes in a finite time (all poles are at zero)
c)
yes
d)
e)
yes
no
yes
8/9
yes
2
f)
g)
h)
no
yes

Name:
2. For each of the pole locations shown on the s-plane below, Draw and label a similar pole location on the z-plane.

Note: The poles on both planes do come in complex-conjugate pairs, but I have only shown those above the real axis. You may do the same below.
unit circle is shown as dotted line

