Name	ECE 3510	Homework	10
------	----------	----------	----

d2

1. Draw a control system loop like the bottom one shown on p.2 of my <u>Control System Characteristics & Performance</u> notes. This is a more complex version of Fig 4.7 (Bodson, p.67), including gain, a feedback sensor ($\mathbf{F}(s)$) and a disturbance input ($\mathbf{D}(s)$).

- 2. With F(s) (or $N_F(\textbf{s})$ and $D_F(\textbf{s})$) added into the following equations, find:
 - a) The full Y(s) =

Note: you may consider k as part of C(s).

b) $\mathbf{E}(s)$ with disturbance ($\mathbf{D}(s)$) as zero: Eq. 4.14 Also find the "DC gain" from $\mathbf{R}(s)$ to $\mathbf{E}(s)$. Eq. 4.19

c) $\mathbf{E}(s)$ with input $(\mathbf{R}(s))$ as zero: Eq. 4.22 Also find the "DC gain" from D(s) to E(s). Eq. 4.23

- 3. List 5 measures of a control system's quality (see p. 64) and list one or two things that can be done to achieve each.
 - 1.
 - 2.
 - 3.
 - 4.
 - 5.
- 4. The transfer functions of C(s) and P(s) are given below. In each case determine if the steady-state error will go to zero and whether disturbances will be completely rejected. Be sure to check for closed-loop stability when needed.

a)
$$C(s) = \frac{s+4}{s^2+3\cdot s+2}$$
 $P(s) = \frac{s+1}{s^2+3\cdot s}$

$$\mathbf{P}(s) = \frac{s+1}{s^2 + 3 \cdot s}$$

b)
$$C(s) = \frac{s+1}{s^2+3.5}$$

b)
$$C(s) = \frac{s+1}{s^2 + 3 \cdot s}$$
 $P(s) = \frac{s+4}{s^2 + 3 \cdot s + 2}$

c)
$$C(s) = \frac{s \cdot (s+6)}{s^2 + 3 \cdot s + 2}$$
 $P(s) = \frac{s+8}{s^2 + 12 \cdot s}$

$$P(s) = \frac{s+8}{s^2+12\cdot s}$$

d)
$$C(s) = \frac{s+9}{s^2+3\cdot s+2}$$
 $P(s) = \frac{s}{s+16}$

$$\mathbf{P}(s) = \frac{s}{s+16}$$

e)
$$C(s) = \frac{s+1}{s^2 + 5 \cdot s + 6}$$
 $P(s) = \frac{s+1}{s^2 + 8 \cdot s + 15}$

$$P(s) = \frac{s+1}{s^2 + 8 \cdot s + 15}$$

f)
$$C(s) = \frac{s+1}{s^3 + 7 \cdot s^2 + 12 \cdot s}$$
 $P(s) = \frac{s+1}{s+3}$

5. Problem 4.2 (p.108) in the text. Determine whether all the roots of the following polynomials are in the open left half-plane. Use your calculator or Matlab to find the actual roots, or use the Routh-Hurwitz method.

a)
$$\mathbf{D}(s) = s^4 + 4 \cdot s^3 + 3 \cdot s^2 + 4 \cdot s + 1$$

c)
$$\mathbf{D}(s) = s^4 + 2 \cdot s^3 + 2 \cdot s^2 + 2 \cdot s + 1$$

Answers

1.& 2. See notes and read sections 4.1 - 4.2 in text (Bodson).

3. b) Eq. 4.14
$$\frac{1}{1 + F \cdot P \cdot k \cdot C} \cdot R$$
 Eq. 4.19 $\frac{1}{1 + F(0) \cdot P(0) \cdot C(0)}$

Eq. 4.19
$$\frac{1}{1 + F(0) \cdot P(0) \cdot C(0)}$$

c) Eq. 4.22
$$\frac{-F \cdot P}{1 + P \cdot k \cdot C \cdot F} \cdot \Gamma$$

No

c) Eq. 4.22
$$\frac{-F \cdot P}{1 + P \cdot k \cdot C \cdot F} \cdot D$$
 Eq. 4.23 $\frac{-F(0) \cdot P(0)}{1 + F(0) \cdot P(0) \cdot C(0)}$

4. a) Yes No

e) No

- b) Yes Yes
- c) No No
- d) No Yes
- f) Yes Yes ECE 3510 homework 10 p5

- 3. a) $\mathbf{Y}(s) = \frac{\mathbf{P} \cdot \mathbf{C} \cdot \mathbf{R} + \mathbf{P} \cdot \mathbf{D}}{1 + \mathbf{P} \cdot \mathbf{C} \cdot \mathbf{F}} = \frac{\mathbf{P} \cdot \mathbf{k} \cdot \mathbf{C} \cdot \mathbf{R} + \mathbf{P} \cdot \mathbf{D}}{1 + \mathbf{P} \cdot \mathbf{k} \cdot \mathbf{C} \cdot \mathbf{F}}$ k as part of C(s) k separate from C(s)
 - $\mathsf{OR} \quad \frac{ \mathsf{D}_{\,F}(0) \cdot \mathsf{D}_{\,P}(0) \cdot \mathsf{D}_{\,C}(0) }{ \mathsf{D}_{\,F}(0) \cdot \mathsf{D}_{\,P}(0) \cdot \mathsf{D}_{\,C}(0) + \mathsf{N}_{\,F}(0) \cdot \mathsf{N}_{\,P}(0) \cdot \mathsf{N}_{\,C}(0) }$

 - $\mathsf{OR} \quad \frac{ ^{-N} \, F(0) \cdot N \, P(0) \cdot D \, C(0)}{D \, F(0) \cdot D \, P(0) \cdot D \, C(0) + N \, F(0) \cdot N \, P(0) \cdot N \, C(0)}$
 - 5. a) Yes b) No
 - 6. EXTRA CREDIT a) 0 < K < 0.4975
 - b) 0 < K < 2.25

Characteristic equations of feedback systems are shown below. In each case, use the Routh-Hurwitz method to determine the value range of K that will produce a stable system. You must show your work.

a)
$$0 = s^4 + 20 \cdot s^3 + 10 \cdot s^2 + s + K$$

b)
$$0 = s^4 + 2 \cdot K \cdot s^3 + 5 \cdot s^2 + K \cdot s + K$$