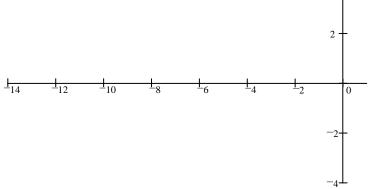
1. A compensator:

 $C(s) = \frac{s + 2 \cdot a}{s + a}$ and a plant: $P(s) = \frac{kp}{s + 6}$

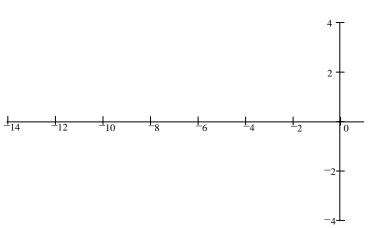
are combined to form an open-loop

transfer function: $G(s) = \frac{kp}{(s+6)} \cdot \frac{(s+2\cdot a)}{(s+a)}$

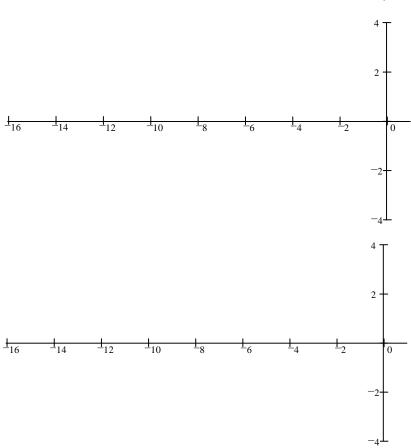
a) Sketch a conventional root-locus plot taking \boldsymbol{k}_{p} as the gain and $\boldsymbol{a}=2.$



b) Sketch a conventional root-locus plot taking k_p as the gain and a=4.



c) Sketch a unconventional root-locus plot taking a as the "gain". $\ k_p$ is not specified.



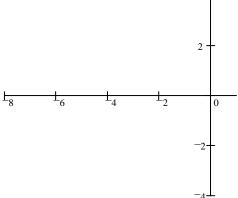
d) Sketch a unconventional root-locus plot taking a as the "gain" and $\boldsymbol{k}_{\text{p}}=2.$

Show that these poles fit on the root locus drawn in part b) as well as the root locus drawn in part d.

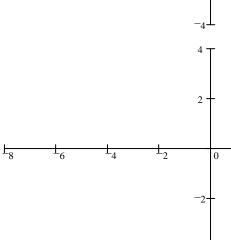
2. A compensator: $C(s) = \frac{a}{s+a}$ and a plant: $P(s) = \frac{k p \cdot s}{(s+4)^2}$ are combined to form an open-loop

transfer function. $G(s) = \frac{k_p \cdot a \cdot s}{(s+4)^2 \cdot (s+a)}$

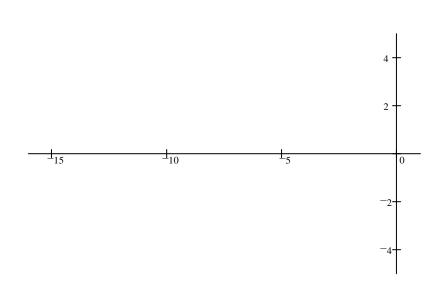
a) Sketch a conventional root-locus plot taking \boldsymbol{k}_p as the gain and some a<4.



b) Sketch a conventional root-locus plot taking \boldsymbol{k}_{p} as the gain and some a>4.

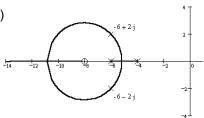


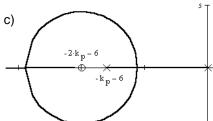
c) Sketch a unconventional root-locus plot taking a as the "gain" and $\boldsymbol{k}_p=2.$



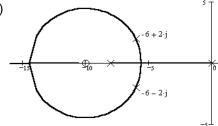
1. a)

b)



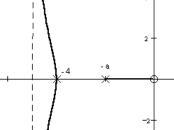


d)

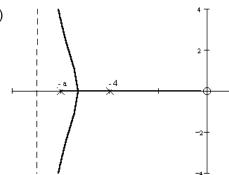


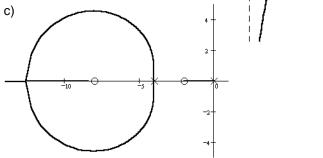
e) $-6+2\cdot j$

see b, above and d, at left



b)





ECE 3510 homework RL8 p3