$\qquad$

1. Like problem 6.4 in the text. Sketch the time function $x(k)$ that you would associate with the following poles. Each signal transform has two poles. Only a sketch is required, but be as precise as possible. You may wish to use Matlab or a spreadsheet to plot these. Actual signal magnitudes and/or phase angles cannot be determined from the pole locations. For the real poles, plot the individual signals first, then add them together to get the final plot.
c) $\mathrm{p}_{1}=0.3$,
$p_{2}=0.9$



b) $\mathrm{p}_{1}=1$,
$\mathrm{p}_{2}=-1$



d) $p_{1}:=e^{j \cdot \frac{\pi}{6}} \quad, \quad p_{2}:=e^{-j \cdot \frac{\pi}{6}} \quad$ For the complex poles, first plot the poles on the complex plane $\&$ unit circle.


a) $\mathrm{p}_{1}:=0.9 \cdot \mathrm{j} \quad, \quad \mathrm{p}_{2}:=-0.9 \cdot \mathrm{j}$


2. For each of the pole locations shown on the s-plane below, Draw and label a similar pole location on the z-plane.


Note: The poles on both planes do come in complex-conjugate pairs, but I have only shown those above the real axis. You may do the same below.
unit circle is shown as dotted line

3. Problem 6.1 in the Bodson text. Find $x(0)$ if the $z$-transform of $x(k)$ is
a) $\mathbf{X}(\mathrm{z})=\frac{\mathrm{a} \cdot \mathrm{z}-1}{\mathrm{z}-1}$
b) $\mathbf{X}(z)=\frac{z}{z^{2}-a \cdot z+a^{2}}$
4. Problem 6.7 in the text.

For the signals whose z-transforms are given below, indicate whether the time functions $x(k)$ are bounded, converge to some value, or vanish in finite time.

Poles or pole magnitudes Bounded Converges $\underline{x(\infty)}$
a) $\mathbf{X}(z)=\frac{z+1}{(z+0.5) \cdot(z-0.7+0.7 \cdot j) \cdot(z-0.7-0.7 \cdot j)}$
b) $\mathbf{X}(z)=\left(1-2 \cdot z^{-1}\right) \cdot\left(1+3 \cdot z^{-1}\right)$
c) $\mathbf{X}(\mathrm{z})=\frac{\mathrm{z}-1}{(\mathrm{z}+1) \cdot(\mathrm{z}+0.5)^{2}}$
d) $\mathbf{X}(\mathrm{z})=\frac{\mathrm{z}+1}{(\mathrm{z}-1) \cdot(\mathrm{z}+0.5)^{2}}$
e) $\mathbf{X}(z)=\frac{z+1}{z \cdot(z-1)}$
f) $\mathbf{X}(\mathrm{z})=\frac{\mathrm{z}^{10}}{(\mathrm{z}+5)}$
g) $\mathbf{X}(\mathrm{z})=\frac{(\mathrm{z}+1)^{2}}{\left(\mathrm{z}^{2}+1\right) \cdot(\mathrm{z}-0.5)}$
h) $\mathbf{X}(\mathrm{z})=\frac{\mathrm{z}-2}{\mathrm{z}^{3} \cdot(\mathrm{z}-1)}$

## Answers

1. Actual signals may have different magnitudes and/or phase angles. You can't tell those things from the pole locations.
c)
$p_{1}=0.3$
$\mathrm{p}_{2}=0.9$



OR

Or many others, depending on relative magnitudes
b)
$\mathrm{p}_{1}=1$

$\mathrm{p}_{2}=-1$






2. a) a b) 0
3. (6.7)
a) $\frac{\text { Bounded }}{\text { yes }} \quad \frac{\text { Converges }}{y e s} \quad \frac{x(\infty)}{0}$
$\begin{array}{lll}\text { b) yes yes } & \begin{array}{l}0 \begin{array}{l}\text { vanishes in a finite time } \\ \text { (all poles are at zero) }\end{array} \\ \text { c) }\end{array}\end{array}$
c) yes
no
d) yes
yes 8/9
e) yes
yes 2
f) no
g) yes no
h) yes yes 1
