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Objectives
The objective of this lab is to give you some experience in the design of a control
algorithm.  An animated ball and beam system has been programed in Matlab.  After
trying to control the system manually, you’ll design a proportional-derivative controller to
do the job automatically.

Introduction
A ball rolling on a beam is both a fun and an educational system.

A diagram of a ball on a beam is shown above.  The beam is
attached to a motor so that its angle 

�
 with respect to the horizontal

can be controlled at will and the ball is free to roll under the action
of gravity.  (You may imagine a small channel in the beam keeps
the ball from rolling sideways.)  The distance of the ball from the
center of the beam is denoted x.  The ball can be placed at any location on the beam,
and will stay there if its velocity v is zero and the beam angle is zero.

Assuming that the only force acting on the ball is gravity, the force in the x-direction
(along the beam) is given by:

where g is the acceleration of gravity and m is the mass of the ball.  This force will
accelerate the ball in the -x direction.  Because the ball will roll rather than just slide,
You’ll have to consider both the linear inertia and the rotational inertia (moment of
inertia) of the ball.  The moment of inertia of a solid sphere is J = 2/5 mr .  The ball’s2

electrical analogy is shown below.

Show that this can be modeled by a
simple sliding mass of 7/5 m.  Also
show the following relationship
between the angle 

�
 and the position

in the x-direction.
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Unfortunately this is a nonlinear relationship.  We will linearize it with the small-angle
approximation, that is, replace sin( � ) with � .   Now derive the following transfer function:

         where   

This transfer function is a double integrator, which is not uncommon in control
applications when force is the control variable and position is the output variable.  It
results from Newton's law, F = ma.  Moving a spacecraft with thrusters is another example
of such a system.  In our case the force is only approximately proportional to �  (the
small-angle approximation).  Furthermore, in a real system built in the lab our input may
have to be the torque of the motor, rather than its position, � .  The model for such a
system would be forth-order rather than second-order.  Nevertheless, the simplified
model will exhibit the most interesting part of the dynamics of the ball and beam system,
and is tractable for manual control.

Real-time simulation and visualization
The real-time simulation is programmed in a Matlab macro (m-file).  A Matlab figure is
used to animate the ball and beam, and you can manually control with a mouse. 
Download the bbeam_xxx.m file from the class website. 

The model of the ball and beam system is implemented in bbeam_xxx.m using an Euler
approximation 

where i is the time instant and dt is the sampling period.  (Notice that this model does not
use the small-angle approximation– that’s only for our control calculations.)  The
sampling period is set to 0.05sec, or an update frequency of 20Hz.  Matlab’s tic and toc
commands provide the timing.  The input and visualization may not occur at exactly 20Hz,
but the deviations are not normally noticeable.  The animation is drawn in a window
using Matlab graphic functions.  The window was scaled so that the ball was round on
the computer screen used to develop the labs. It may be necessary to readjust the
window size on your computer.  Only manual control will work when you first run the
bbeam_xxx.m file.  Automatic control requires other .m files that you will have to write
yourself.

the position of the ball is limited to the length of the beam (±0.4m) by setting the velocity
to zero when the end of the beam is reached.  Friction of the ball rolling on the beam is
simulated by setting the velocity to zero if the ball velocity and the beam angle are small
enough.
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Manual control
Run the bbeam_xxx.m file and select manual control.  As an objective, try to move the
ball to one of the little red lines and make it stay there.  Then try to move it to the other
line as fast as fast you can. Have fun and get a sense for the challenges of controlling a
double integrator.  Notice how you have to account for the ball velocity in your strategy
and begin you deceleration early.  An automatic controller will need to do the same. 
Explain the challenges of the manual control problem in your lab notebook and describe
the strategies that you have developed for control.

Automatic control
Alright, enough of the kid’s stuff, time to automate this baby.  Choose a
proportional-derivative controller, so that

     with  

As mentioned in the PID lab, there can be problems differentiating x , so we’ll simplifyREF

the control law to:

      where  

Derive the closed-loop transfer function.  Since there are two feedback paths, you will
have to derive it mathematically like you did in the PID lab.  This should result in a
second-order system whose poles can be placed arbitrarily.  Choose the parameters kP

and k  so that the two closed-loop poles are real and equal, with an associated timeV

constant of 0.3 seconds.

Explain what would happen if the derivative gain k  was set to 0.V

Implement the control algorithm in the real-time simulation.  Look for information and
comments in the bbeam_xxx.m code about parameters that may need to be modified and
calls to other m-files.   You should find that you need to create two m-files.  An
initialization file called bbeamcinit.m which is called once before the simulation starts and
a file called bbeamc.m containing the control algorithm.  The control algorithm is called at
the same rate as the ball and beam simulation.  Later you will need to define arrays in
the initialization file, and store relevant variables in the control file in order to plot the
results of your experiments, but first, just get the system to work.

Your control file should also generate a reference position input that alternates between
0.3m and -0.3m (the positions of the little red lines) every 6 seconds.  That is, a square
wave with an amplitude of 0.3 and a period of 12 seconds.  Something like this could do

the trick:      

The variable t in the code is the time.  The position of the ball is called xball in the code
and the velocity of the ball is called vball in the code.  With these you can generate the
control signal, theta, the angle of the beam.  It should be limited to ±5 degrees.  The
variable thmax is already defined as 5 degrees in the bbeam file, but you need to do the
limiting in your control file. 
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Once you have your system running automatically, try to run it with the derivative gain kV

was set to 0.  Does it behave as you predicted?  Try a k  significantly smaller than yourV

calculated value.  How does it behave now?  Reset  k  to your calculated value.V

Add some lines to your two files so that you can collect data of x, v, and �  for 20
seconds.

Plot the responses of  x, v, and � .  You may want to create a third file just for plotting. 
Include these plots in your notebook.

Repeat the experiment with a time constant of 0.2 seconds and explain the overshoot
observed in the responses. 

You may wish to try to improve your controller’s speed.  If you can demonstrate a faster
controller (using any control law) to your TA (no fair hitting the end of the beam) your TA
can give you extra credit, the faster, the better.  Your TA will include a comment in your
notebook and will award points later depending on how your speed compares to speeds
achieved by your classmates.  A position plot is the best way to prove your speed. 
Speed is measured as the time it takes to get (and stay) within 0.02m of the 0.3m mark. 
That means that your ball’s position must stay within 0.28 to 0.32m.

Insert listings of your bbeamc.m and bbeamcinit.m files in your notebook.

Checkoff and conclusions
Show your code and demonstrate
the real-time operation to the TA
(either time constant, your choice).

Your conclusion should include some
description of challenges and strategies
for manual control and a qualitative
description of how the automatic
controller achieves this.  Compare the
automatic control to the manual. 
Include other observations and
comments.


