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Objectives
The objective of this lab is to learn about the challenges posed by resonances in
feedback systems.  You’ll gain an intuitive understanding of the difficulty through the
manual control of a flexible beam resembling a large space robotic arm.  The lab will lead
you through a control design in the frequency domain using a lead controller.  A second
design will include a notch filter in the feedback loop to reduce the excitation of
resonances.

Introduction
Systems with lightly-damped, complex poles (resonances), are encountered in many
applications.  An example is a large robotic arm in space, whose transversal dimensions
are made small to reduce weight.  The arm will bend and oscillate if moved rapidly.  In a
computer disk drive, a read/write head is attached to the end of a small, rigid structure
which is rotated rapidly to access various tracks.  When the head is positioned within
fractions of microns, even such a rigid structure behaves like a flexible structure.

The diagram of the flexible beam
is shown at right.  The angle of
the beam at the shaft which
rotates the beam at the bottom, is
denoted θ, while φ is the angle at
the tip. If there was no flexibility,
the two angles would be equal. 

The Bode plot on the next page
was drawn from experimental data
collected from a 0.4-meter-long
flexible beam.  An electric motor
was hooked to the bottom of the
beam and was driven by a
variable-frequency current.  The
frequency response was measured from the angular acceleration of the motor shaft.  The
acceleration at the shaft was obtained by measuring the position with an encoder.  This
position needs to be differentiated twice (multiplied by s2) to get the acceleration.  (The
frequency response is multiplied by ω2 to obtain the acceleration).  The next Bode plot
shows the response measured from the angular acceleration of the tip.  The acceleration
at the tip was obtained with an accelerometer.  The plots show the experimental data, as
well as approximate fits obtained with fourth-order models (as dashed lines).  The fourth-
order models are shown beneath the respective plots.  Note that the poles are very
lightly damped.
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Divide both sides by s2 to get the position vs current. This simplifies to eq. on p.4.
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The previous plots were made for angular acceleration.  That makes the plots flatter and
it makes the complex peaks easier to see, but we will actually control the beam position. 
The upshot of this is that the s2 will move from the numerator on the left to the
denominator on the right and the bode plots will actually be sloped downward at an extra
40 dB/decade.

The input variable is the current driving the motor, measured in amps (A), and the anglesθ and Φ are measured in radians.  The poles of the transfer functions are equal.  So are
the DC gains.  That makes sense since there is no bending of the beam near zero
frequency.  The angular acceleration DC gains come out to about 5.5, so for low
frequencies, the transfer functions for the angles are approximately given by 

This approximation of the system is like the double integrator encountered in the ball and
beam lab.  In this case, however, we also have additional poles and zeros close to the
jω-axis, and even two zeros in the right half-plane.  All this makes the feedback design
more difficult than for the ball & beam.

Include some of this introductory material in your lab notebook or report.

Manual control 
Download a copy of the simulation file called flex.m.   Run it in the manual mode and try
to move the beam to one of the 45º lines and stabilize it there.  Try to move the beam
back and forth between the lines.  You will encounter two difficulties: the 1/s2 (lagging)
behavior and the flexibility of the beam.  You can avoid resonances by moving the beam
slowly, but performance will be unimpressive.  It can be enlightening (and fun) to “excite”
the resonances by applying commands in the same frequency range as the flexible
modes.  The beam will bend to large angles.  Once you understand this mechanism, you
may return to the task of rapidly moving the beam from side to side without exciting such
resonances.  Describe the difficulties of manual control as well as way(s) to deal with
them.  Is your response time good? 

Now before you get too cocky, you should know that the simulation was implemented
differently from previous simulations.  This continuous time model was discretized with a
sampling period of 200Hz.  The program runs at a rate of approximately 20Hz, so the
visualization actually runs at about 1/10th real-time, slowing the dynamics by about a
factor of 10.  The actual system dynamics are too fast to be controlled manually. 
Previous simulations ran at approximately real time.

Lead controller design
The objective is to design a lead controller
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Such a controller is described in the text at the end of chapter 5.  Here, as there, the
design will be performed in the frequency domain.  The motor current i is the control
signal, and the tip angle φ is the output to be regulated, with a reference value φref. 

The Bode plots of the lead controller are shown above.  In the notes for the course, the
variables are shown to satisfy the following constraints

To determine the controller parameters, we consider an approximate model of the plant
with the two poles at the origin and only the first resonant modes.  The transfer function
from i to φ is then: Use This Eq.

These are Bode plots of the loop transfer function for the approximate plant with the lead
compensator.  The magnitude plot shows as the crossover frequency, a condition that
will be enforced by proper choice of the parameters.  Assuming that ωn >> ωp, show that

and
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Automatic control
Design #1
For this design, we’d like a  phase margin of 60º.  Next, we’d like to suppress the gain
enough to achieve a gain margin of 20dB (magnitude is 0.1) at that first peak.  Finally
we’ll find the crossover frequency at ωp and from that, the pole (a) and zero (b) of the
lead controller.

Find the values of the controller parameters a/b,  kc, ωp, a, and b in that order.  This is
about the best you can do with this system if you don’t add extra filters.  

Implement the controller in the simulation with files flex.m,  flexc.m and flexcinit.m.  Only
the last file will have to be modified.  A discrete-time equivalent of the control system will
be computed, as was done in the previous labs.  Discretization will be based on a 200Hz
sampling frequency, so that visualization will show the system at a rate slowed down by a
factor of 10. 

The file  flexcinit.m  will plot the Bode plots with the gain and phase margins (function
“margin” in Matlab) and the step response of the closed-loop system (function “step” in
Matlab).  The feedback system is assembled using a state-space method in Matlab, but
could also be done with the functions “series” and “feedback”.

Use the stepping reference option, which will cause  φref to switch between 45º and -45º
every 2 seconds, and let the record the data for 6 seconds (which will take 60 seconds in
the simulation).  Plot the responses of  i,  θ, φ, and θ - φ  to step inputs (run flexpl.m).  
The visualization should show a slow response, with a large overshoot, due to the low
frequency zero at s = -b.  If you reduce the gain margin by increasing *C(jωn)P(jωn)*, you
will find that the crossover frequency increases and that the response speeds up, but
oscillations are observed due to excitation of the beam’s flexible modes.  Print all the
plots.

Try controlling this system with a manual reference.  Describe how this works differently
than the original manual control and how, with a little practice, you can beat the
performance of the totally automatic system.  Notice how smoothly you apply the input
reference to get this better performance.

Design #2
One way to improve performance is by adding some more filters.  A low-pass prefilter ,
CF(s), will smooth-out the input steps and a notch filter, Cnotch(s), will suppress signals
which excite the resonance of the plant.  The lead controller, C(s), will have the same
form as before but different parameters.
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Let the prefilter be                where b is the zero of the compensator. 

Let the notch filter be

where ωn is the natural frequency of the first resonant mode.  The prefilter will eliminate
the overshoot, and the notch filter will allow you to increase the crossover frequency and,
as a result, the speed of response.  Re-design the lead controller with ωp = 12 rad/s,
keeping the condition that φp = 60E and the crossover frequency condition

Implement the new design as “Design #2" in  flexcinit.m.  Run the simulation and make all
the plots and printouts as before.  Compare the responses to those of the previous
controller. 

Try controlling this system with a manual reference.  It is no longer easy to beat the
performance of the totally automatic system.  Can you tell the difference between
manually controlling design#2 and manually controlling design #1?

Checkoff and conclusions
Show your code and demonstrate the real-time operation to the TA.
Be sure to include some description of challenges and strategies for manual control and
it changed when the manual became the reference input to the closed-loop system. 
Describe the improvements achieved by the automatic control systems.  Include
observations and comments.


