
A. Stolp
4/11/23Using Frequency-domain (Bode Plot) Design for the Double Integrator

Double Integrator
A very common system and a difficult design problem.

It's Newton's fault: F = .m a = .m d

d
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.m s2Same for angular motion: T = .J α = .J d
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This problem arises anytime force is 
the input and position is the output.

Force is the ONLY way to get the 
motion of any object to change, so 
yes, this is a common problem.

In the Inverted Pendulum lab, the movement of the base is simplified to a 
first-order system to avoid the difficulties that come from this very issue.

The example used in section 5.3.9 is a VERY REAL example.
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MUST use a compensator.

If the angle is always 180, then 
wouldn't positive feedback work?
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Positive feedback is similar to negative gain, which makes 
root-locus rules work backwards, here the real-axis rule:

Just makes the 
RL worse.

Given the issues with a PD (the differentiator). lets use a Lead controller.
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Lead controller
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See section 5.3.9 |C(s)|
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Put the two together,
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But now the maximum  phase angle difference from 
180 doesn't occur where the magnitude crosses 0dB. .0 dB

This problem is resolved in the math shown 
in the book, which makes:

ω (rad/sec)ω c = ω p
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The Bottom Line
I've combined information from the table in section 5.3.7 with the table in section 5.3.9. 

For double integrator problem
 /
/

approximation from simpler system of section 5.3.7
/a

b φ p = PM ζ %OS = PO = percent overshoot
   based on ζ approx.

1. Select your a/b ratio, 
use this ratio as a 
single number in 
following equations.

5.83 45o 0.44 .20.5 %

9 53.1o 0.55 .14 %
PM, ζ relationship is also shown 
in section 5.3.7, 2nd eq. (5.63)13.9 60o 0.6 .9.5 %

Extension of table using approximate relationship 
between PM and overshoot developed in section 5.3.7use

a

b
as a single
number

Or use eq. 5.73

2. Use eq. 5.75 to relate ωc to kp and kc. .
.k p k c

ω c
2

b

a
= 1 OR, rearranged: ω p = ω c = ..k p k c

b

a

1

a

b

Note:
b

a
=

Depending on your knowns and unknowns, other rearrangements may be useful:

.k p k c = .ω c
2 a

b
k p = .

ω c
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k c
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b
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ω c
2

k p
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b

To get some answers, I arbitrarily used: ω c 10 k p 1 and found kc from the eq. above

3. Find: a = .ω c
a

b
= .ω p

a

b
b = .ω c

b

a
= .ω p

b

a

the pole location of C(s) the zero location of C(s) 

Problem 5.14 in the text shows that the approximations of overshoot given in the table above are not very good 
(off by about a factor of 2), but, those predicted by the second-order approximation are even worse (b/c of zero 
close to origin).

Why Bode Plots?
1. Provides a method to find the approximate transfer function as used in the Flexible Beam lab. 

2. Terms GM and PM are in wide use and you need to know what they mean.

3. Sometimes used for design method as in the Flexible Beam lab. 
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Example Problem 5.14 in the text. ECE 3510    Bode Design  p4
a) Consider the lead controller for the double integrator.  For the design that makes the crossover frequency equal 

to ωC, obtain the polynomial that specifies the closed-loop poles (as a function of a/b and ωC).  Show that one 
closed-loop pole is at s = - ωC no matter what a/b is.
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s2
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s b
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Denominator of the closed-loop transfer function: D G N G = .s2 ( )s a ..k p k c ( )s b

= s3 .a s2 ..k p k c ( )s b = 0
to find poles
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eq. 5.70 in book.
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0 No remainder, QED
b) Compute the other closed-loop poles, as functions of ωC, 

when a/b = 5.83, 9, and 13.9.

The "other" roots are the roots of the quotient. 0 = s2 ..ω c
a

b
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2
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9 1
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.0.436 ω c & .2.292 ω cECE 3510    Bode Design  p4



ECE 3510    Bode Design  p5 For plots: t ..,0.01 0.02 1.5

c) Use Matlab SISO or other software of your choice to confirm the results of part c) and the % overshoot figures 

expected from the phase margins by the second-order approximation. ( .20 % .14 % .9.5 % )
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I will set: ω c 10 k p 1

First case:
a

b
= a_b 5.83 a = .ω c

a

b
= a .ω c a_b =a 24.145

b =
ω c

a

b

= b
ω c

a_b

=b 4.142

k c = .
ω c
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.
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Second case:

a

b
= a_b 9 a .ω c a_b b
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a_b
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.
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k p
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Third case:
a

b
= a_b 13.9 a .ω c a_b b
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.
ω c

2

k p
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=a 37.283

G c( )s =
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at red squares:
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Actual overshoots are much larger than expected by 
the table above, but, overshoots predicted by the 
second-order approximation are even worse (b/c of 
zero close to origin).
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