Double Integrator

A very common system and a difficult design problem.

$$
\begin{aligned}
& \text { It's Newton's fault: } \quad F=m \cdot a=m \cdot \frac{d^{2}}{d t^{2}} x \\
& \text { Same for angular motion: } T=J \cdot \alpha=J \cdot \frac{d^{2}}{d t^{2}} \theta
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{X}(\mathrm{s})= & \mathbf{F}(\mathrm{s}) \cdot \frac{1}{\mathrm{~m} \cdot \mathrm{~s}^{2}} \\
& \& \quad \mathbf{P}(\mathrm{~s})=\frac{1}{\mathrm{~m} \cdot \mathrm{~s}^{2}}
\end{aligned}
$$

This problem arises anytime force is the input and position is the output.

Force is the ONLY way to get the motion of any object to change, so yes, this is a common problem.

In the Inverted Pendulum lab, the movement of the base is simplified to a first-order system to avoid the difficulties that come from this very issue.

The example used in section 5.3 .9 is a VERY REAL example.

If the angle is always 180 , then wouldn't positive feedback work?

Positive feedback is similar to negative gain, which makes root-locus rules work backwards, here the real-axis rule:
Given the issues with a PD (the differentiator). lets use a Lead controller.

$$
\mid \quad \text { CL poles } \pm \sqrt{\mathrm{K} \cdot \mathrm{k}_{\mathrm{p}}}
$$

Lead controller

See section 5.3.9

$$
\mathbf{C}(\mathrm{s})=\mathrm{k}_{\mathrm{c}} \cdot \frac{\mathrm{~s}+\mathrm{b}}{\mathrm{~s}+\mathrm{a}}
$$

Put the two together,

$$
\mathbf{G}(\mathrm{s})=\mathrm{k}_{\mathrm{c}} \cdot \frac{\mathrm{~s}+\mathrm{b} \cdot \mathrm{~b}}{\mathrm{~s}+\mathrm{a}} \cdot \frac{\mathrm{k}_{\mathrm{p}}}{\mathrm{~s}^{2}}=\mathrm{k}_{\mathrm{p}} \cdot \mathrm{k}_{\mathrm{c}} \cdot \frac{\mathrm{~s}+\mathrm{b}}{\mathrm{~s}^{2} \cdot(\mathrm{~s}+\mathrm{a})}
$$

Bode plots (numbers are representative)

But now the maximum phase angle difference from 180 doesn't occur where the magnitude crosses 0dB.

This problem is resolved in the math shown in the book, which makes:

$$
\begin{aligned}
\omega_{\mathrm{c}} & =\omega_{\mathrm{p}} \\
\text { freq. of maximum } & =\text { freq. where } \mathbf{G}(\mathrm{s}) \\
\text { phase difference } & \text { crosses } 0 \mathrm{~dB} .
\end{aligned}
$$

The Bottom Line

I've combined information from the table in section 5.3.7 with the table in section 5.3.9.

1. Select your a / b ratio, use this ratio as a single number in following equations.

2. Use eq. 5.75 to relate ω_{c} to k_{p} and $\mathrm{k}_{\mathrm{c}} \cdot \quad \frac{\mathrm{k}_{\mathrm{p}} \cdot \mathrm{k}_{\mathrm{c}}}{\omega_{\mathrm{c}}{ }^{2}} \cdot \sqrt{\frac{\mathrm{~b}}{\mathrm{a}}}=1 \quad$ OR, rearranged: $\omega_{\mathrm{p}}=\omega_{\mathrm{c}}=\sqrt{\mathrm{k}_{\mathrm{p}} \cdot \mathrm{k}_{\mathrm{c}} \cdot \sqrt{\frac{b}{a}}}$ Note: $\frac{b}{a}=\frac{1}{\left(\frac{a}{b}\right)}$
Depending on your knowns and unknowns, other rearrangements may be useful:

$$
\mathrm{k}_{\mathrm{p}} \cdot \mathrm{k}_{\mathrm{c}}=\omega_{\mathrm{c}}^{2} \cdot \sqrt{\frac{\mathrm{a}}{\mathrm{~b}}} \quad \mathrm{k}_{\mathrm{p}}=\frac{\omega_{\mathrm{c}}^{2}}{\mathrm{k}_{\mathrm{c}}} \cdot \sqrt{\frac{\mathrm{a}}{\mathrm{~b}}} \quad \mathrm{k}_{\mathrm{c}}=\frac{\omega_{\mathrm{c}}^{2}}{\mathrm{k}_{\mathrm{p}}} \cdot \sqrt{\frac{\mathrm{a}}{\mathrm{~b}}}
$$

To get some answers, I arbitrarily used: $\quad \omega_{\mathrm{c}}:=10 \quad \mathrm{k}_{\mathrm{p}}:=1 \quad$ and found k_{c} from the eq. above
$\begin{array}{rlr}\text { 3. Find: } \quad \begin{aligned} a & =\omega_{c} \cdot \sqrt{\frac{a}{b}}=\omega_{p} \cdot \sqrt{\frac{a}{b}}\end{aligned} \quad b=\omega_{c} \cdot \sqrt{\frac{b}{a}}=\omega_{p} \cdot \sqrt{\frac{b}{a}} \\ & \text { the pole location of } \mathbf{C}(\mathrm{s}) & \text { the zero location of } \mathbf{C}(\mathrm{s})\end{array}$

Problem 5.14 in the text shows that the approximations of overshoot given in the table above are not very good (off by about a factor of 2), but, those predicted by the second-order approximation are even worse (b/c of zero close to origin).

Why Bode Plots?

1. Provides a method to find the approximate transfer function as used in the Flexible Beam lab.
2. Terms GM and PM are in wide use and you need to know what they mean.
3. Sometimes used for design method as in the Flexible Beam lab.
a) Consider the lead controller for the double integrator. For the design that makes the crossover frequency equal to ω_{C}, obtain the polynomial that specifies the closed-loop poles (as a function of a / b and ω_{C}). Show that one closed-loop pole is at $\mathrm{s}=-\omega_{\mathrm{C}}$ no matter what a / b is.

$$
\mathbf{G}_{\mathbf{c}}(\mathrm{s})=\mathbf{P}(\mathrm{s}) \cdot \mathbf{C}(\mathrm{s})=\frac{\mathrm{k}_{\mathrm{p}}}{\mathrm{~s}^{2}} \cdot \mathrm{k}_{\mathrm{c}} \cdot \frac{\mathrm{~s}+\mathrm{b}}{\mathrm{~s}+\mathrm{a}}
$$

Denominator of the closed-loop transfer function:

$$
\begin{aligned}
\mathbf{D}_{\mathbf{G}}+\mathbf{N}_{\mathbf{G}} & =\mathrm{s}^{2} \cdot(\mathrm{~s}+\mathrm{a})+\mathrm{k}_{\mathrm{p}} \cdot \mathrm{k}_{\mathrm{c}} \cdot(\mathrm{~s}+\mathrm{b}) \\
& =\mathrm{s}^{3}+\mathrm{a} \cdot \mathrm{~s}^{2}+\mathrm{k}_{\mathrm{p}} \cdot \mathrm{k}_{\mathrm{c}} \cdot(\mathrm{~s}+\mathrm{b})=0
\end{aligned}
$$

$$
\text { Substitute: } \quad a=\omega_{c} \cdot \sqrt{\frac{a}{b}} \quad b=\omega_{c} \cdot \sqrt{\frac{b}{a}} \quad k_{c}=\frac{\omega_{c}^{2}}{k_{p}} \cdot \sqrt{\frac{a}{b}} \quad \text { eq. } 5.70 \text { in book. }
$$

$$
0=s^{3}+\omega_{c} \cdot \sqrt{\frac{a}{b}} \cdot s^{2}+k_{p} \cdot\left(\frac{\omega_{c}{ }^{2}}{k_{p}} \cdot \sqrt{\frac{a}{b}}\right) \cdot\left(s+\omega_{c} \cdot \sqrt{\frac{b}{a}}\right) \quad=s^{3}+\omega_{c} \cdot \sqrt{\frac{a}{b}} \cdot s^{2}+\omega_{c}{ }^{2} \cdot \sqrt{\frac{a}{b}} \cdot s+\omega_{c}{ }^{2} \cdot \sqrt{\frac{a}{b}} \cdot \omega_{c} \cdot \sqrt{\frac{b}{a}}
$$

$$
=s^{3}+\omega_{c} \cdot \sqrt{\frac{a}{b}} \cdot s^{2}+\omega_{c}{ }^{2} \cdot \sqrt{\frac{a}{b}} \cdot s+\omega_{c}^{3} \quad s^{2}+\omega_{c} \cdot\left(\sqrt{\frac{a}{b}}-1\right) \cdot s+\omega_{c}{ }^{2}
$$

$$
\text { Polynomial division: } \mathrm{s}+\omega_{\mathrm{c}} \mathrm{~s}^{3}+\omega_{\mathrm{c}} \cdot \sqrt{\frac{\mathrm{a}}{\mathrm{~b}}} \cdot \mathrm{~s}^{2}+\omega_{\mathrm{c}}{ }^{2} \cdot \sqrt{\frac{\mathrm{a}}{\mathrm{~b}}} \cdot \mathrm{~s}+\omega_{\mathrm{c}}{ }^{3}
$$

$$
-s^{3}-\omega_{c} \cdot s^{2}
$$

$$
\left(\omega_{\mathrm{c}} \cdot \sqrt{\frac{\mathrm{a}}{\mathrm{~b}}}-\omega_{\mathrm{c}}\right) \cdot \mathrm{s}^{2}+\omega_{\mathrm{c}}{ }^{2} \cdot \sqrt{\frac{\mathrm{a}}{\mathrm{~b}}} \cdot \mathrm{~s}+\omega_{\mathrm{c}}{ }^{3}
$$

$$
-\omega_{c} \cdot\left(\sqrt{\frac{a}{b}}-1\right) \cdot s^{2}-\omega_{c}{ }^{2} \cdot\left(\sqrt{\frac{a}{b}}-1\right) \cdot s
$$

$$
\omega_{c}^{2} \cdot s+\omega_{c}^{3}
$$

$$
\omega_{c}^{2} \cdot s+\omega_{c}^{3}
$$

b) Compute the other closed-loop poles, as functions of ω_{C}, when $\mathrm{a} / \mathrm{b}=5.83,9$, and 13.9 .
The "other" roots are the roots of the quotient. $\quad 0=s^{2}+\omega_{c} \cdot\left(\sqrt{\frac{a}{b}}-1\right) \cdot \mathrm{s}+\omega_{c}{ }^{2}$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{a} / \mathrm{b}=5.83 \quad\left(\frac{\mathrm{a}}{\mathrm{~b}}-1=(\sqrt{5.83}-1)=1.415\right. \\
\mathrm{s}=\left[\frac{-\omega_{\mathrm{c}} \cdot(\sqrt{5.83}-1)}{2}+\frac{1}{2} \cdot \sqrt{\left.\left[\omega_{\mathrm{c}} \cdot(\sqrt{5.83}-1)\right]^{2}-4 \cdot \omega_{c}{ }^{2}\right]}=\frac{-\omega_{\mathrm{c}} \cdot(\sqrt{5.83}-1)}{2}+\frac{1}{2} \cdot \omega_{c} \cdot \sqrt{(\sqrt{5.83}-1)^{2}-4}\right.
\end{array} \\
& =\frac{-(\sqrt{5.83}-1)}{2}+\frac{1}{2} \cdot \sqrt{(\sqrt{5.83}-1)^{2}-4}=-0.707+0.707 \mathrm{j} \quad(-0.7071-0.7071 \cdot \mathrm{j}) \cdot \omega_{\mathrm{c}} \quad \& \quad(-0.7071+0.7071 \cdot \mathrm{j}) \cdot \omega_{\mathrm{c}} \\
& \mathrm{a} / \mathrm{b}=9 \quad \frac{-(\sqrt{9}-1)}{2}=-1 \quad \frac{\sqrt{(\sqrt{9}-1)^{2}-4}}{2}=0 \quad-\omega_{c} \quad \& \quad-\omega_{c} \\
& \mathrm{a} / \mathrm{b}=13.9 \quad \frac{-(\sqrt{13.9}-1)}{2}+\frac{1}{2} \cdot \sqrt{(\sqrt{13.9}-1)^{2}-4}=-0.436 \\
& \text { ECE } 3510 \text { Bode Design p4 } \\
& \begin{aligned}
\frac{-(\sqrt{13.9}-1)}{2}-\frac{1}{2} \cdot \sqrt{(\sqrt{13.9}-1)^{2}-4} & =-2.292 \\
\& & -2.292 \cdot \omega_{\mathrm{c}}
\end{aligned}
\end{aligned}
$$

ECE 3510 Bode Design p5

For plots: $\mathrm{t}:=0.01,0.02 . .1 .5$
c) Use Matlab SISO or other software of your choice to confirm the results of part c) and the \% overshoot figures expected from the phase margins by the second-order approximation.
($20 . \% \quad 14 . \% ~ 9.5 \% ~) ~$

$$
\mathbf{P}(\mathrm{s}) \cdot \mathbf{C}(\mathrm{s})=\frac{\mathrm{k}_{\mathrm{p}}}{\mathrm{~s}^{2}} \cdot \mathrm{k}_{\mathrm{c}} \cdot \frac{\mathrm{~s}+\mathrm{b}}{\mathrm{~s}+\mathrm{a}} \quad \mathrm{H}(\mathrm{~s})=\frac{\mathrm{P}(\mathrm{~s}) \cdot \mathrm{C}(\mathrm{~s})}{1+\mathrm{P}(\mathrm{~s}) \cdot \mathrm{C}(\mathrm{~s})} \quad=\frac{\mathrm{k}_{\mathrm{p}} \cdot \mathrm{k}_{\mathrm{c}} \cdot(\mathrm{~s}+\mathrm{b})}{(\mathrm{s}+\mathrm{a}) \cdot \mathrm{s}^{2}+\mathrm{k}_{\mathrm{p}} \cdot \mathrm{k}_{\mathrm{c}} \cdot(\mathrm{~s}+\mathrm{b})}
$$

$$
\mathbf{X}(s)=\frac{1}{s} \text { the unit step function }
$$

$$
\mathbf{Y}(\mathrm{s})=\mathbf{X}(\mathrm{s}) \cdot \mathbf{H}(\mathrm{s})=\frac{1}{\mathrm{~s}} \cdot \frac{\mathrm{k}_{\mathrm{p}} \cdot \mathrm{k}_{\mathrm{c}} \cdot(\mathrm{~s}+\mathrm{b})}{(\mathrm{s}+\mathrm{a}) \cdot \mathrm{s}^{2}+\mathrm{k}_{\mathrm{p}} \cdot \mathrm{k}_{\mathrm{c}} \cdot(\mathrm{~s}+\mathrm{b})}=\frac{1}{\mathrm{~s}} \cdot \frac{\mathrm{k}_{\mathrm{p}} \cdot \mathrm{k}_{\mathrm{c}} \cdot(\mathrm{~s}+\mathrm{b})}{(\mathrm{s}+\mathrm{a}) \cdot \mathrm{s}^{2}+\mathrm{k}_{\mathrm{p}} \cdot \mathrm{k}_{\mathrm{c}} \cdot(\mathrm{~s}+\mathrm{b})}
$$

$$
=\frac{1}{\mathrm{~s}} \cdot \frac{\mathrm{k}_{\mathrm{p}} \cdot \mathrm{k}_{\mathrm{c}} \cdot(\mathrm{~s}+\mathrm{b})}{\left(\mathrm{s}+\omega_{\mathrm{c}}\right) \cdot\left[\mathrm{s}^{2}+\omega_{\mathrm{c}} \cdot\left(\sqrt{\left.\left.\frac{\mathrm{a}}{\mathrm{~b}}-1\right) \cdot \mathrm{~s}+\omega_{\mathrm{c}}^{2}\right]}\right.\right.}
$$

I will set: $\quad \omega_{\mathrm{c}}:=10 \quad \mathrm{k}_{\mathrm{p}}:=1$
First case: $\frac{a}{b}=\mathrm{a} _\mathrm{b}:=5.83 \quad \mathrm{a}=\omega_{c} \cdot \sqrt{\frac{a}{b}}=\mathrm{a}:=\omega_{c} \cdot \sqrt{\mathrm{a}_{-} \mathrm{b}} \quad \mathrm{a}=24.145$

$$
\begin{aligned}
& \mathrm{b}=\frac{\omega_{\mathrm{c}}}{\sqrt{\frac{\mathrm{a}}{\mathrm{~b}}}}=\mathrm{b}:=\frac{\omega_{\mathrm{c}}}{\sqrt{\mathrm{a} _\mathrm{b}}} \quad \mathrm{~b}=4.142 \\
& \mathrm{k}_{\mathrm{c}}=\frac{\omega_{\mathrm{c}}^{2}}{\mathrm{k}_{\mathrm{p}}} \cdot \sqrt{\frac{\mathrm{a}}{\mathrm{~b}}}=\mathrm{k}_{\mathrm{c}}:=\frac{\omega_{\mathrm{c}}^{2}}{\mathrm{k}_{\mathrm{p}}} \cdot \sqrt{\mathrm{a}_{-} \mathrm{b}} \quad \mathrm{k}_{\mathrm{c}}=241.454
\end{aligned}
$$

$$
\mathbf{G}_{\mathbf{c}^{(\mathrm{s}}}=\frac{\mathrm{k}_{\mathrm{p}}}{\mathrm{~s}^{2}} \cdot \mathrm{k}_{\mathrm{c}} \cdot \frac{\mathrm{~s}+\mathrm{b}}{\mathrm{~s}+\mathrm{a}}=\frac{241.454 \cdot(\mathrm{~s}+4.142)}{\mathrm{s}^{2} \cdot(\mathrm{~s}+24.145)}
$$

Expected overshoot
Expected overshoot
$\zeta:=\frac{45 \cdot \mathrm{deg}}{100 \cdot \mathrm{deg}} \quad \zeta=0.45 \quad 100 \cdot \% \cdot \mathrm{e}^{\frac{-\zeta \cdot \pi}{\sqrt{1-\zeta^{2}}}=20.535 \cdot \%}$

Second case:

$$
\begin{aligned}
& \begin{array}{ll}
\frac{\mathrm{a}}{\mathrm{~b}}=\mathrm{a} _\mathrm{b}:=9 & \mathrm{a}:=\omega_{\mathrm{c}} \cdot \sqrt{\mathrm{a} _\mathrm{b}} \\
\mathrm{a}=30
\end{array} \quad \mathrm{~b}:=\frac{\omega_{\mathrm{c}}}{\sqrt{\mathrm{a} _\mathrm{b}}} \quad \mathrm{~b}=3.333 \quad \mathrm{k}_{\mathrm{c}}:=\frac{\omega_{\mathrm{c}}{ }^{2}}{\mathrm{k}_{\mathrm{p}}} \cdot \sqrt{\mathrm{a} _\mathrm{b}} \quad \mathrm{k}_{\mathrm{c}}=300 \\
& \mathbf{G}_{\mathbf{c}^{(s)}}=\frac{300 \cdot\left(\mathrm{~s}+\frac{10}{3}\right)}{\mathrm{s}^{2} \cdot(\mathrm{~s}+30)} \\
& \text { Root Locus with gain = } 1 \\
& \text { CL pole Locations } \\
& \text { at red squares: } \\
& 1 \\
& \text { Expected overshoot } \\
& \zeta:=\frac{53.1 \cdot \operatorname{deg}}{100 \cdot \operatorname{deg}} \quad \zeta=0.531 \quad 100 \cdot \% \cdot e^{\sqrt{1-\zeta^{2}}}=13.964 \cdot \% \\
& \% \text { overshoot } \simeq 27 . \%
\end{aligned}
$$

$\mathrm{b}=2.682$
$\mathrm{k}_{\mathrm{c}}:=\frac{\omega_{\mathrm{c}}{ }^{2}}{\mathrm{k}_{\mathrm{p}}} \cdot \sqrt{\mathrm{a} _\mathrm{b}} \quad \mathrm{k}_{\mathrm{c}}=372.827$

Expected overshoot
$\zeta:=\frac{60 \cdot \mathrm{deg}}{100 \cdot \mathrm{deg}} \quad \zeta=0.6 \quad 100 \cdot \% \cdot \mathrm{e}^{\sqrt{\sqrt{1-\zeta^{2}}}=9.478 \cdot \%}$

$\%$ overshoot $\simeq 21 . \%$
Actual overshoots are much larger than expected by the table above, but, overshoots predicted by the second-order approximation are even worse (b/c of zero close to origin).

