Ex. $1 \quad P(s)=$ ?
$\mathbf{P}(\mathrm{s})=\mathrm{K} \cdot \frac{\mathrm{s}}{\mathrm{s}+40}$

After 40rad/sec:
$\mathbf{P}(\mathrm{s}) \simeq \mathrm{K}=10^{\left(\frac{26 \cdot \mathrm{~dB}}{20 \cdot \mathrm{~dB}}\right)}=19.95$ round to: $\mathrm{K}:=20$

$$
\arg \left(K \cdot \frac{j \omega}{-+40}\right)=90 \cdot \operatorname{deg}
$$

$$
\arg \left(K \cdot \frac{j \omega}{j \omega+0}\right)=0 \cdot \operatorname{deg}
$$

Angles work out, so:

$$
\mathbf{P}(s)=20 \cdot \frac{s}{s+40}
$$



Ex. 2 What if the phase plot was:
$\mathbf{P}(\mathrm{s})=$ ?
Angles are different by $180^{\circ}$, so:
$P(s)=-20 \cdot \frac{s}{s+40}$


## Bode Plot to Transfer Function Examples p. 2

## Ex. $3 \quad \mathbf{P}(\mathrm{~s})=$ ?

This plot is in Hz , which is what you would do in the lab with a scope or frequency counter.
$\omega=2 \cdot \pi \cdot f$
$\mathbf{P}(\mathrm{s})=\mathrm{K} \cdot \frac{\mathrm{s}+2 \cdot \pi \cdot 10}{\mathrm{~s}+2 \cdot \pi \cdot 500}$
At 1 Hz :
$\mathbf{P}(\mathrm{s}) \simeq \mathrm{K} \cdot \frac{-+2 \cdot \pi \cdot 10}{-+2 \cdot \pi \cdot 500}=\frac{\mathrm{K}}{50}$
$=10^{\left(\frac{20 \cdot \mathrm{~dB}}{20 \cdot \mathrm{~dB}}\right)}=10$
$K=500$
OR: $K=10^{\left(\frac{54 \cdot \mathrm{~dB}}{20 \cdot \mathrm{~dB}}\right)}=501.19$ (after 500 Hz )

Angles work out, so:

$$
\begin{aligned}
\mathbf{P}(s) & =500 \cdot \frac{s+2 \cdot \pi \cdot 10}{s+2 \cdot \pi \cdot 500} \\
& =500 \cdot \frac{s+62.83}{s+3142}
\end{aligned}
$$

$$
\arg \left(\mathrm{K} \cdot \frac{-+2 \cdot \pi \cdot 10}{-+2 \cdot \pi \cdot 500}\right)=0 \cdot \operatorname{deg}
$$



Ex. 4 What if the phase plot was:
$\arg \left(K \cdot \frac{j \omega+0}{j \omega+0}\right)=0 \cdot \operatorname{deg}$

## $\mathbf{P}(\mathrm{s})=$ ?

Angle for 1 st section is off by $180^{\circ}$. Angle for 2nd and 3rd sections are the same as above $\arg \left(\mathrm{K} \cdot \frac{--2 \cdot \pi \cdot 10}{-+2 \cdot \pi \cdot 500}\right)=180 \cdot \operatorname{deg}$
$\mathbf{P}(s)=500 \cdot \frac{s-2 \cdot \pi \cdot 10}{s+2 \cdot \pi \cdot 500}$
$=500 \cdot \frac{s-62.83}{s+3142}$


$$
\begin{aligned}
& \text { Ex. } 5 \quad \mathbf{P}(s)=? \\
& \mathbf{P}(s)= \\
& K \cdot \frac{s}{(s+2 \cdot \pi \cdot 80) \cdot(s+2 \cdot \pi \cdot 10000)}
\end{aligned}
$$

$$
|\mathbf{P}(\mathrm{f})| \quad \mathrm{dB}
$$

From 80 Hz to 10 kHz :
$\mathbf{P}(\mathrm{s}) \simeq$

$$
\begin{aligned}
& K \cdot \frac{j \omega}{(j \omega+0) \cdot(-+2 \cdot \pi \cdot 10000)} \\
& =\frac{K}{2 \cdot \pi \cdot 10000} \\
& =10^{\left(\frac{72 \cdot \mathrm{~dB}}{20 \cdot \mathrm{~dB}}\right)}=3981
\end{aligned}
$$


$K=3981 \cdot(2 \cdot \pi \cdot 10000)=2.5 \cdot 10^{8}$

$\arg \left[\frac{j \omega}{(-+2 \cdot \pi \cdot 80) \cdot\left(\_+2 \cdot \pi \cdot 10000\right)}\right]=$ $\arg \left[\frac{j \omega}{(j \omega+0) \cdot\left(\_+2 \cdot \pi \cdot 10000\right)}\right]$

Angles work out, so:

$$
\begin{aligned}
\mathbf{P}(\mathrm{s}) & =\frac{25 \cdot 10^{8} \cdot \mathrm{~s}}{(\mathrm{~s}+2 \cdot \pi \cdot 80) \cdot(\mathrm{s}+2 \cdot \pi \cdot 10000)} \\
& =\frac{25 \cdot 10^{8} \cdot \mathrm{~s}}{(\mathrm{~s}+503) \cdot(\mathrm{s}+62832)}
\end{aligned}
$$



$$
\arg \left[\frac{j \omega}{(j \omega+0) \cdot(j \omega+0)}\right]=-90 \cdot \operatorname{deg}
$$

Ex. 6 What if the phase plot was:
$\mathbf{P}(\mathrm{s})=$ ?

Angles are different by $180^{\circ}$, so:
$\mathbf{P}(\mathrm{s})=\frac{-25 \cdot 10^{8} \cdot \mathrm{~s}}{(\mathrm{~s}+503) \cdot(\mathrm{s}+62832)}$


Initial slope $=20 \mathrm{~dB} / \mathrm{dec}$, Indicates zero at origin
$\mathrm{K} \cdot \mathrm{s}$
$(s+100) \cdot\left(s^{2}+2 \cdot \zeta \cdot \omega_{\mathrm{n}} \cdot \mathrm{s}+\omega_{\mathrm{n}}{ }^{2}\right)$
complex poles at:

$\omega_{\mathrm{n}}:=20000 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
$\omega_{\mathrm{n}}{ }^{2}=4 \cdot 10^{8} \cdot\left(\frac{\mathrm{rad}}{\mathrm{sec}}\right)^{2}$
peaking at complex
zeros $=20 \mathrm{~dB}$, so:

$$
\begin{gathered}
10^{\frac{20}{20}}=10=\frac{1}{2 \cdot \zeta} \\
\zeta:=\frac{1}{2 \cdot 10} \quad \zeta=0.05 \\
2 \cdot \zeta \cdot \omega_{\mathrm{n}}=2000 \cdot \frac{1}{\mathrm{sec}}
\end{gathered}
$$


$\mathbf{P}(\mathrm{s})=\frac{\mathrm{K} \cdot \mathrm{s}}{(\mathrm{s}+100) \cdot\left(\mathrm{s}^{2}+2 \cdot \zeta \cdot \omega_{\mathrm{n}} \cdot \mathrm{s}+\omega_{\mathrm{n}}{ }^{2}\right)}=\frac{\mathrm{K} \cdot \mathrm{s}}{(\mathrm{s}+100) \cdot\left(\mathrm{s}^{2}+2000 \cdot \mathrm{~s}+4 \cdot 10^{8}\right)}$
From 100 to $20 \mathrm{krad} / \mathrm{sec}: \mathbf{P}(\mathrm{s}) \simeq \frac{\mathrm{K} \cdot \mathrm{j} \omega}{(\mathrm{j} \omega+0) \cdot\left({ }_{-}^{2}+2000 \cdot_{-}+4 \cdot 10^{8}\right)}=\frac{\mathrm{K}}{4 \cdot 10^{8}}=10^{\left(\frac{40 \cdot \mathrm{~dB}}{20 \cdot \mathrm{~dB}}\right)}=100$

$$
K=100 \cdot\left(4 \cdot 10^{8}\right)=4 \cdot 10^{10}
$$

Note: A somewhat more involved method is outlined in Nise section 10.13 (p. 660 in 3rd ed., 665 in 4th). That method involves estimating only one pole or zero at a time and then subtracting the effect from original to more clearly see the others. This can work much better with real experimental data. Real data always has delay effects and other non-linearities which make the process much harder.

