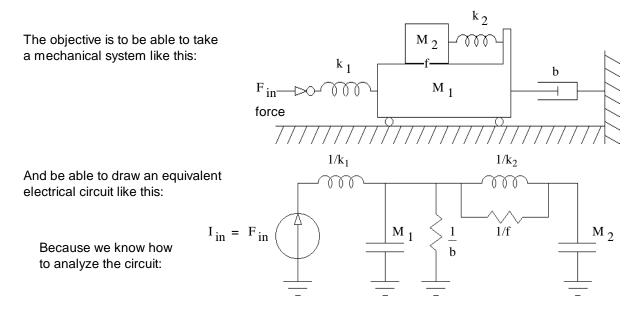
ECE 3510

Electrical Analogies of Mechanical Systems

A.Stolp 2/14/06, rev, 2/4/24

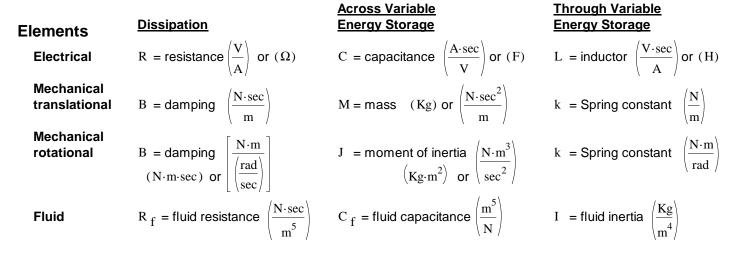
This method is based on the method of Linear Graphs. In Linear Graphs, all systems are reduced to a universal symbology peculiar to Linear Graphs (system graph) and then analyzed by methods very similar to those used with electric circuits. Since we, as electrical engineers, are already well versed in the symbology of electric circuits, my variation of linear graphs reduces mechanical systems to electric circuits and leaves them in that symbology for ready analysis by methods, tools and computer programs that we are already familiar with.



Lecture: Skip forward to "Mechanical system with linear motion (translational)" Material below is for later reference.

Across and Through Variables

Across Variable **Through Variable** Electrical V = voltage (volts) or (V)I = current (Amps) or (A)Mechanical (newtons) or (N) or $\left(\text{Kg} \cdot \frac{\text{m}}{\text{sec}^2}\right)$ F = force v = velocity translational Mechanical ω = angular velocity T = torque (N·m) rotational Q = flow $\left(\frac{m^3}{m}\right)$ P = pressure Fluid or (Pa)



Basic Electric Circuit Analysis

Element	Parts like resistors, capacitors, inductors & transformers	
Wires and connections	Direct the current, but do not affect voltage	
Circuit	Wires and elements connected to form loops	
Voltage	Measured as a difference across an element	
Current	Flows through a wire or element	
Kirchhoff's Current Law (KCL)	Current in = current out of all elements, wires & connections	
Kirchhoff's Voltage Law (KVL)	Voltage gains = voltage "losses" around any circuit loop	
Node	Connected wires and connections which all have the same voltage	
Ground	Zero-reference node for all other nodal voltages	
Branch	Connected wires and elements which all have the same current	
Power $P = V \cdot I$	Power = Across variable x Through variable	
Voltage Source	Constant voltage regardless of current in or out	
Current Source	Constant current regardless of voltage + or -	
Passive Electrical Elements	2	

Resistors

V = I·R Resistors dissipate power P = V·I = $I^2 \cdot R = \frac{V^2}{R}$

Capacitors

 $C = \frac{Q}{V} \quad \text{farad} = \frac{\text{coul}}{\text{volt}} = \frac{\text{amp \cdot sec}}{\text{volt}} \quad v_C = \frac{1}{C} \left[\begin{array}{c} \bullet t \\ & i_C \, dt \end{array} \right] = \frac{1}{C} \left[\begin{array}{c} \bullet t \\ & i_C \, dt + v_C(0) \end{array} \right] \quad i_C = C \cdot \frac{d}{dt} v_C$

Energy stored in electric field: $E_{C} = \frac{1}{2} \cdot C \cdot V_{C}^{2}$

Capacitor voltage cannot change instantaneously

Laplace: Impedance: $Z_C = \frac{1}{C_{CR}}$

Inductors

henry = $\frac{\text{volt} \cdot \text{sec}}{\text{amp}}$ $i_L = \frac{1}{L} \int_{-\infty}^{t} v_L dt = \frac{1}{L} \int_{0}^{t} v_L dt + i_L(0)$

Energy stored in magnetic field: $E_L = \frac{1}{2} \cdot L I_L^2$

Inductor current cannot change instantaneously Laplace: Impedance: $Z_L = L s$

Transformers (ideal)

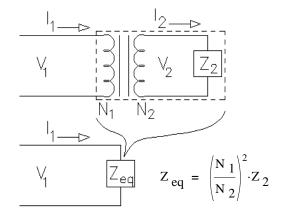
Ideal:

 $P_1 = P_2$ power in = power out

Turns ratio = N = $\frac{N_1}{N_2}$ = $\frac{V_1}{V_2}$ = $\frac{I_2}{I_1}$ Note: some books define the turns ratio as N₂/N₁

Equivalent impedance in primary: $\mathbf{Z}_{eq} = \mathbf{N}^2 \cdot \mathbf{Z}_2 = \left(\frac{\mathbf{N}_1}{\mathbf{N}_2}\right)^2 \cdot \mathbf{Z}_2$

You can replace the entire transformer and load with (Z_{ea}) . This "impedance transformation" can work across systems.



 $v_{L} = L \frac{d}{dt} i_{L}$

Mechanical system with linear motion (translational)

F = Force

v_i

O

Through Variable:			
Across Variable:			
	• v dt		

V(s)

s

v	= velocity	$\left(\frac{\mathrm{m}}{\mathrm{sec}}\right)$
x	= displace	ment (m)
	(s) = displa n freq doma	cement (m·sec) in)

Mechanical translational

(N)

Damper or friction

v o

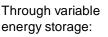
Ο

B or f

F

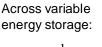
Dissipation element:

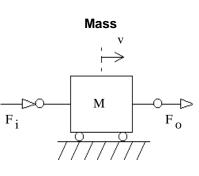
$$P = v \cdot F = \frac{F^2}{B}$$
$$= v^2 \cdot B$$



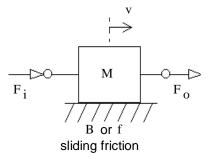
 $E = \frac{1}{2} \cdot \frac{1}{k} \cdot F^2 = \frac{1}{2} \cdot k \cdot x^2$

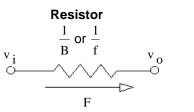
Springs are sometimes shown like this:



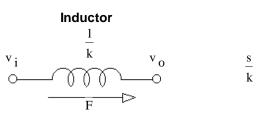


Mass with friction

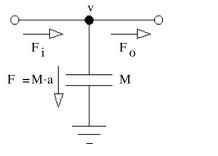




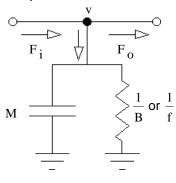
Impedance

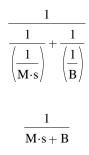


Capacitor hooked to ground



Capacitor and resistor





1

M∙s

Do Examples 1 and 2

Transformers (ideal)

Two coils of wire that are magnetically coupled.

Electrical transformers are only useful for AC, which is not true of mechanical transformers

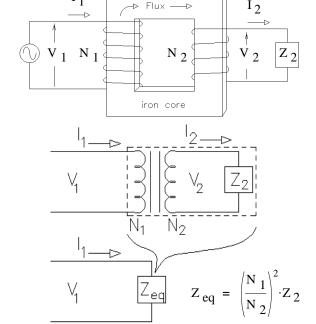
Transformers are used to increase/decrease voltages/currents.

Ideal:

 $P_1 = P_2$ power in = power out

Turns ratio = N = $\frac{N_1}{N_2}$ = $\frac{V_1}{V_2}$ = $\frac{I_2}{I_1}$

Note: some books define the turns ratio as N_2/N_1



Iron-core transformer

Flux -

secondary

primary

I 1

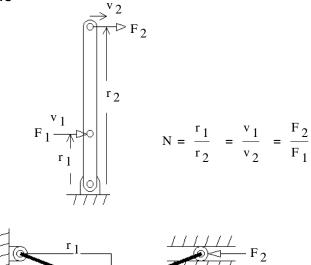
Equivalent impedance in primary: $\mathbf{Z}_{eq} = \mathbf{N}^2 \cdot \mathbf{Z}_2 = \left(\frac{\mathbf{N}_1}{\mathbf{N}_2}\right)^2 \cdot \mathbf{Z}_2$

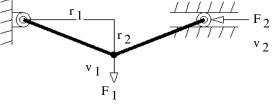
You can replace the entire transformer and load with (Z_{ea}) . This "impedance transformation" can be very handy.

Transducers and Transformers

A transducer converts power from one type to another. We can model many of them with transformers. Transformers increase the through variable and correspondingly decrease the across variable or vice-versa.

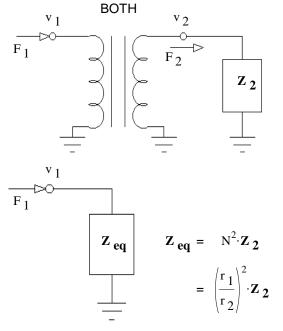
Mechanical "Transformers" (Translational motion)





 $N = \frac{r_1}{r_2} = \frac{v_1}{v_2} = \frac{F_2}{F_1}$

(not really this simple)



Mechanical system with circular motion (rotational)

Through Variable:

Across Variable:

$$\int \frac{\omega(s)}{s}$$

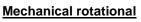
Dissipation element:

power

$$P = v \cdot T = \frac{T^2}{B}$$
$$= \omega^2 \cdot B$$

Through variable energy storage:

 $E = \frac{1}{2} \cdot \frac{1}{k} \cdot T^2$



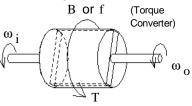
T = Torque (N·m) ω = angular velocity $\left(\frac{\text{rad}}{2}\right)$

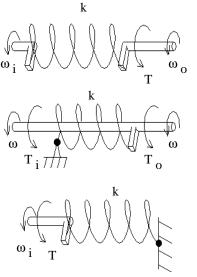
sec/

 θ = angular displacement (rad)

 $\theta(s)$ = angular displacement (rad·sec) (in freq domain)

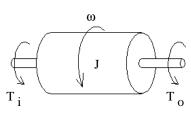
Damper or friction





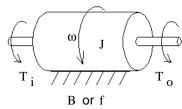
Across variable energy storage:

$$E = \frac{1}{2} \cdot J \cdot \omega^2$$



Moment of Inertia, J

J with friction



 B or f

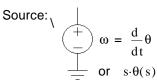
 ECE 3510
 Electrical
 sliding friction

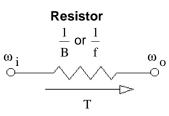
 Analogies
 p5
 Do Example 6

Electrical

I = current (A)

V = voltage (V)





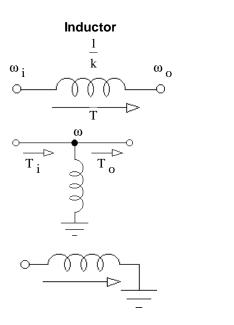
Impedance

Source:

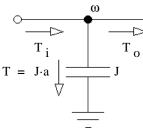
Source:

 $\frac{1}{B}$ or $\frac{1}{f}$

 $\frac{s}{k}$



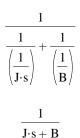
Capacitor hooked to ground



 $\frac{1}{J \cdot s}$

Capacitor and resistor

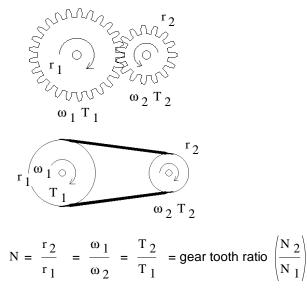


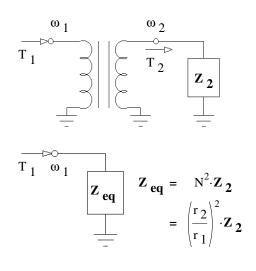


More Transducers and Transformers

Belts, chains, & gears

r = pitch radius of pulley or of gears





Transformation one type of motion or power to another requires a Transformer

Tires, racks, & conveyors

r = radius of wheel or pitch radius of belt pulley



Note: N = r if the input is linear motion and output is rotational.

Do Example 6

DC Motors

i

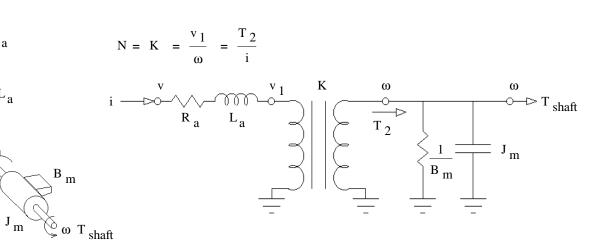
v 1

Κ

R_a

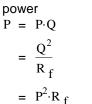
La

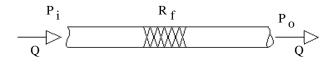
T₂

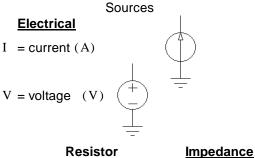


Fluid (hydraulic) system

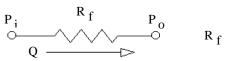
- <u>Fluid</u> Q = volumetric flow rate $\left(\frac{m^3}{m}\right)$ Through Variable: P = Pressure $\left(\frac{N}{m^2}\right)$ or (Pa) Across Variable:
- **Dissipation element:**

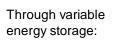


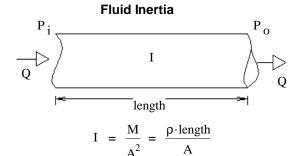


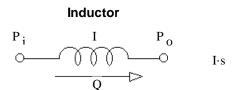


Resistor





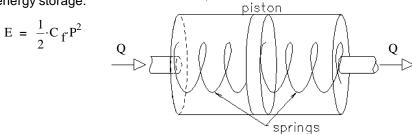




open top tank

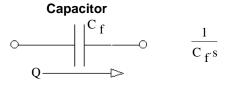
Qi

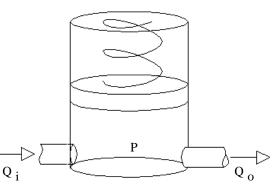
Fluid Capacitors



h

Q₀

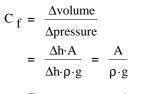




for all capacitors

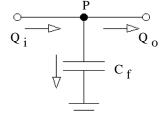
Р

А



For open top tank

OR

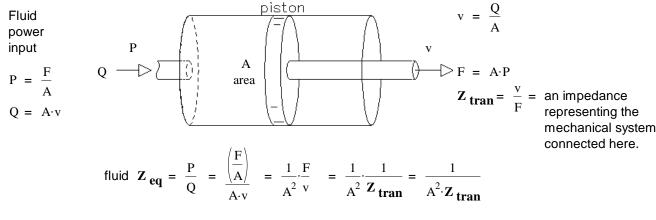


Gyrators

Pistons and Turbines convert through variables to across variables & vice versa, so there are no good electrical analogies.

Yet you can still transform an impedance from a mechanical system into the fluid system. You'll find that capacitors become inductors, inductors become capacitors and parallel swaps with series.

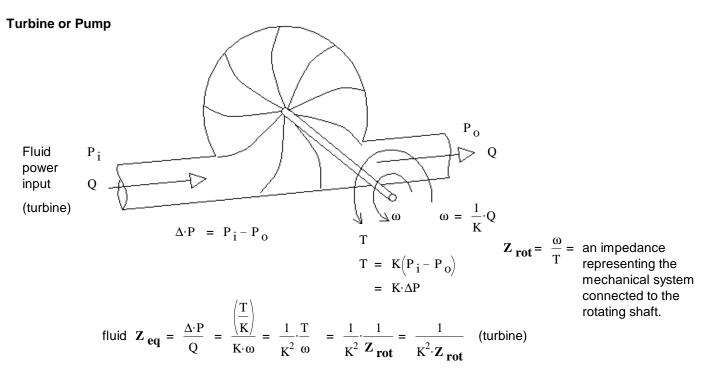
Piston & Cylinder



If the input is mechanical linear motion power and the output is fluid power:

translational mechanical $\mathbf{Z}_{eq} = \frac{\mathbf{v}}{\mathbf{F}} = \frac{\left(\frac{\mathbf{Q}}{\mathbf{A}}\right)}{\mathbf{A}\cdot\mathbf{P}} = \frac{1}{\mathbf{A}^2}\cdot\frac{\mathbf{Q}}{\mathbf{P}} = \frac{1}{\mathbf{A}^2}\cdot\frac{1}{\mathbf{Z}_{fluid}} = \frac{1}{\mathbf{A}^2\cdot\mathbf{Z}_{fluid}}$

Do Example 5



If the input is mechanical rotational power and the output is fluid power (pump):

rotational mechanical
$$\mathbf{Z}_{eq} = \frac{\omega}{T} = \frac{\left(\frac{Q}{K}\right)}{K \cdot \Delta P} = \frac{1}{K^2} \cdot \frac{Q}{\Delta P} = \frac{1}{K^2} \cdot \frac{1}{\mathbf{Z}_{fluid}} = \frac{1}{K^2 \cdot \mathbf{Z}_{fluid}}$$
 (pump)

Note: $\Delta P = P_0 - P_i$ across the pump