A Nyquist plot is essentially a polar Bode plot. Like a Bode plot, it is plotted for the Open-Loop (OL) Transfer function and will give information about the stability of the Closed-Loop (CL) system.

 $\mbox{Open-Loop (OL) Transfer function:} \quad \mbox{$G(s)$} = \frac{N \ \mbox{$G(s)$}}{D \ \mbox{$G(s)$}} \qquad \mbox{m = number of zeros} \\ \mbox{n = number of poles} \label{eq:gaussian_constraint}$

Basic Nyquist Rules

- 1. "Clean up" any "-s" terms in G(s) by multiplying by -1 as needed. If an overall "-" remains in G(s), then add 180° to all the angles below. (rare)
- 2. Start at G(0), the DC gain, a point on the real axis.

If G(s) has a zero at the origin: G(0) = 0

If G(s) has a pole at the origin: $G(0) = \pm \infty$

If G(s) has no poles or zeros in the right-half plane then:

plot heads upward if first corner frequency is a zero ω =0

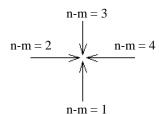
plot heads downward if first corner frequency is a pole

3. End at $G(\infty)$.

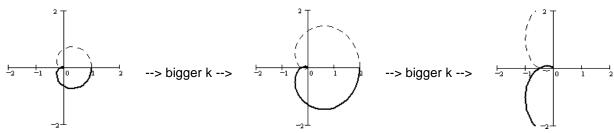
$$n < m$$
 Plot ---> ∞ , almost always + ∞ (rare)

 $n \ = \ m \qquad \quad \text{Plot $---$>$} G(\infty) \text{, a point on the real axis}$

n > m Plot ---> 0 Angle of approach to origin = $(n-m) \cdot (-90 \cdot deg)$ (most common)



- 4. Plot the rest of the frequency response of $G(j\omega). \ \mbox{Use}$ Bode plot to gude you.
- 5. Add the ω < 0 curve (dashed line). It is simply the mirror image of the ω > 0 curve about the real axis. This part of the curve is usually not necessary, it doesn't provide any more information.
- 6. Gain, k, makes entire plot grow in all directions (or shrink if k<1).



$$7. Z = N + P$$

 $P = \mathsf{OL}\left(G(s)\right)$ poles in RHP (0 if open-loop stable). P cannot be \blacksquare

N = CW encirclements of -1, CCW encirclements are counted as negative and may make up for P.

Z = CL poles in RHP (must be zero if closed-loop stable). Z cannot be ${\hbox{\ensuremath{$^{\circ}$}}}$

8. ANY CW encirclements means Closed-Loop system is UNSTABLE

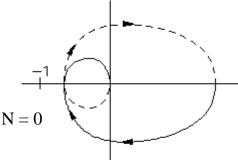
 $N > 0 \longrightarrow CL$ unstable (P cannot be $\overline{}$)

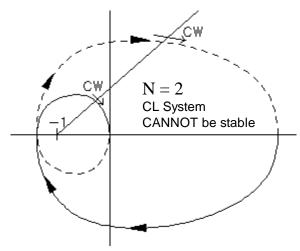
Nyquist Plot Notes p.2 ECE 3510

Counting Clockwise Encirclements

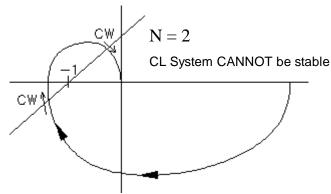
N = CW encirclements of -1,

CCW encirclements are counted as negative and may make up for P.



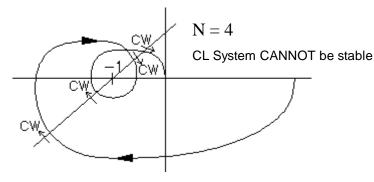


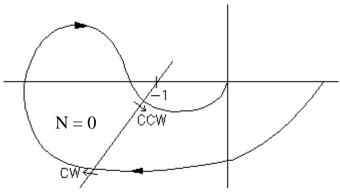
If you have the ω < 0 curve (dashed line), then you can use any single-ended line that starts at -1 to help you count encirclements.



If you don't have the ω < 0 curve (dashed line), then make your line extend both directions from -1.

CW





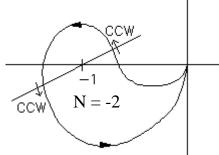
CCW encirclements are counted as negative.

$$Z = N + P$$

P = OL poles in RHP (0 if open-loop stable)

N= CW encirclements of -1. CL System CANNOT be stable if N>0

N = 2CL System CANNOT be stable CCW



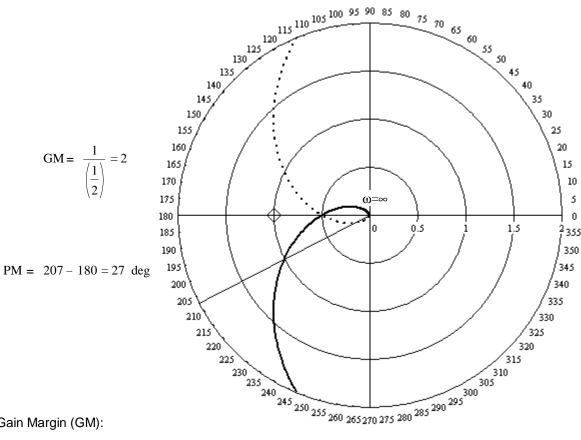
-N can make up for +P. and stabilize an OL unstable system

CL System CAN be stable, if $P \le 2$

Nyquist Plot Notes p.2 **ECE 3510**

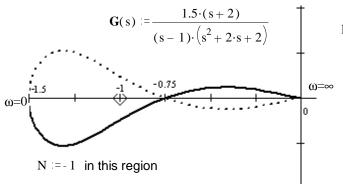
To find the Phase Margin (PM):

- 1. Find where the Nyquist plot crosses the unit circle. These crossings separate the unit circle into regions.
- 2. Decide which of these regions have unacceptable CW encirclements.
- 3. Determine what phase change would cause the -1 point to be an unacceptable region, usually 180° /crossing



To find the Gain Margin (GM):

- 1. Find where the Nyquist plot crosses the negative real axis. These crossings separate the negative real axis into regions.
- 2. Decide which of these regions have unacceptable CW encirclements.
- 3. Determine what gain would cause the -1 point to be an unacceptable region, usually $\frac{1}{-\text{crossing}}$ into the unacceptable region.
- 4. Usually there is just one upper limit of gain-- in that case report that as the Gain Margin.
- 5. If there is a lower limit of gain, report the Gain Margin as: GM = Lower limit, upper limit If there is no upper limit, then report it as ∞



$$P := 1$$
 For CL stability, $N := -1$ or more

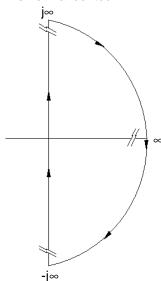
$$GM = \left[\frac{1}{1.5} , \frac{1}{0.75} \right] = \left[0.667 , 1.333 \right]$$

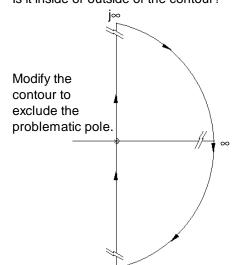
Poles on the imaginary (j ω) axis

ECE 3510 Nyquist Plot Notes p.4

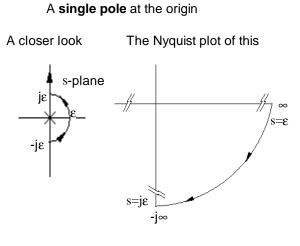
The normal contour

A pole on the imaginary axis causes a problem. Is it inside or outside of the contour?

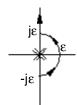




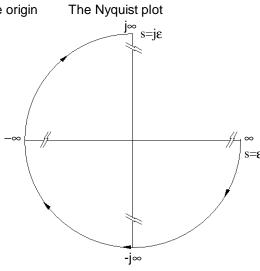
-j∞



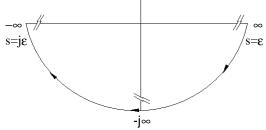
A double pole at the origin



A triple pole at the origin



The Nyquist plot



Poles at other locations on the imaginary axis

