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ECE 3510  BIBO  System  Responses to an Impulse or a Step input

Impulse  Response
The Impulse response of a system is the output when the input is an impulse (delta function).

The simplest possible input: X( )s = 1

Input is an impulse

X( )s = 1 H( )s output = "impulse response"

( The response of the system to an impulse)

Y( )s = .X( )s H( )s = .1 H( )s = H( )s

A signal who's transform is 
the system's transfer function

Of course, an impulse is a little impractical in real life.  
But, if you can approximate one, than you may be able to use it to characterize an unknown system.

Sometimes the term "impulse response" is used in place of the term "transfer function"

Step Responses

The step response of a system is the output when the input is a step (DC which starts at time-zero).

Step input

Im
time-domain

s-plane

X m DC Re
pole is at 0

time
x( )t = .X m u( )t X( )s = .X m
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s

System Step Response

step input H( )s output = step response

y( )t y ss( )t y tr( )t
x( )t

X m =
t +

t t t
..X m H( )0 u( )t

H( )0 = DC Gain

Complete step response  =  steady-state response  +    transient response
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Steady-State Response & DC Gain 

Y( )s = .X( )s H( )s = .
X m

s
H( )s

Complete step response

partial fraction expansion: Y( )s = .
X m
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multiply both sides by s .X m H( )s = A + .B
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set s 0 .X m H( )0 = A + .B
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A

s
=

.X m H( )0

s
y ss( )t = ..X m H( )0 u( )t

H( )0 = DC Gain DC Gain

The transient part would be found by finishing the partial-fraction expansion.

Step Response of First-Order Systems
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k

s a
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τ
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y( )t = ..X m
k

a
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e

.a t u( )t (ignoring initial conditions)

a step plus an exponential curve  is the step response of a first-order system
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time constants, τ

All first-order systems have the same time-domain response:

y( )t = y( )∞ .( )y( )0 y( )∞ e

t

τ A simple example of a first-order system

y( )0 = the initial condition
R

y( )∞ = the final condition

C

v C( )t = v C( )∞ .v C( )0 v C( )∞ e

t

τ τ = .R C
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Exponential Curves

Let's take a closer look at some of the characteristics of exponential curves,  the output of stable first order 
system.  The transient effects always die out after some time, so the exponents are always negative.

Step response of: H( )s =
k

s
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τ
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Some Important Features:
1) These curves proceed from an initial condition to a final condition.  If the final condition is greater than 
the initial, then the curve is said to be a "rising" exponential.  If the final condition is less than the initial, 
then the curve is called a "decaying" exponential.  

2) The curves' initial slope is + 1/τ.  Ιf they continued at this initial slope they'd reach the final condition in 
one time constant. 

3) In the first time constant the curve goes 63% from initial to the final condition.

4) By four time constants the curve is within 2% of the final condition and is usually considered finished.  
Mathematically, the curve approaches the final condition asymptotically and never reaches it.  In reality, of 
course, this is nonsense.  Whatever difference there may be between the mathematical solution and the 
final condition will soon be overshadowed by random fluctuations (called noise) in the real system.
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Step Response of Second-Order Systems

Real poles (over and critically damped)
A first-order system for reference
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Second-order system, over damped
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Some Important Features:
1) The poles closest to the jω axis are the dominant poles.

2) Poles to the left of the dominant poles may introduce an effect that looks like time delay.

3) Conversely, the effects of a time delay (non-linear) can sometimes be modeled by an extra pole (linear) 
to the left of the dominant poles.
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Step Responses of Under-Damped 2nd order Systems  (Complex poles)
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Step Responses,  Effect of Zeroes ECE 3510  System Responses   p6

A first-order system for reference
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An overdamped system with a single zero
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k is normalized so the curves below will not reach the same final condition. 
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Some Important Features: time constants, τ

1) The zero (z) is in the LHP if z is positive.

2) If the zero is closer to the origin than the poles, than it can cause overshoot and/or significant steady-state error.

Remember this one
3) The steady-state error will be 100% (no DC gain) if the zero is at the origin.  The zero is at the 
origin cancels the pole of the DC (step) input.  (The system has a differentiator.)

4) A zero in the RHP (non-minimum phase zero) can cause undershoot or a negative DC gain. 
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