CONTINUOUS JOINT DENSITY FUNCTION
Defu : Jant density R unction $f(x, y)$ of the continuous random variables x and Y
a) $f(x, y) \geqslant 0$ for all (x, y)
b) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$

Also for any region A in the $x y$ plane

$$
P[(x, y) \in A]=\iint_{A} F(x, y) d x d y
$$

Example:

$f(x, y)$ shaped like a cone

$$
f(x, y)=\left\{\begin{array}{c}
\frac{h\left(2-\sqrt{x^{2}+y^{2}}\right)}{2}, \sqrt{x^{2}+y^{2}} \leqslant 2 \\
0, \text { elsewhere }
\end{array}\right.
$$

Find h that makes $f(x, y)$ a valid density.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=\text { Volume under cone } \\
& =\int_{0}^{h}(\text { Area of circle at height } z) d z
\end{aligned}
$$

$$
\begin{aligned}
V 0 l & =\frac{4 \pi}{h^{2}} \int_{0}^{h} h^{2}-2 h z+z^{2} d z \\
& =\frac{4 \pi}{h^{2}}\left(\left.h^{2} z\right|_{0} ^{h}-\left.h z^{2}\right|_{0} ^{h}+\left.\frac{z^{3}}{3}\right|_{0} ^{h}\right) \\
& =\frac{4 \pi}{h^{2}}\left(h^{3}-h^{3}+\frac{h^{3}}{3}\right) \\
& =\frac{4 \pi h}{3}
\end{aligned}
$$

Since $v d=1 \quad \frac{4 \pi h}{3}=1 \Rightarrow h=\frac{3}{4 \pi}$

* Find the probability that $x^{2}+y^{2} \leq 1$.

$$
P\left(x^{2}+y^{2} \leq 1\right)=\iint_{A} f(x, y) d x d y
$$

where A is the disk $x^{2}+y^{2} \leq 1$ in the $x y$ plan

Shaded volume is

$$
P\left(x^{2}+y^{2} \leq 1\right)=\iint_{A} f(x, y) d x d y
$$

Change to polar coordinates $r=\sqrt{x^{2}+y^{2}}$

$$
\begin{aligned}
& \iint_{A} f(x, y) d x d y=\int_{\theta=0}^{2 \pi} \int_{r=0}^{1} r f(x, y) d r d \theta \\
&=\int_{\theta=0}^{2 \pi} \int_{r=0}^{1} r \frac{3}{8 \pi}(2-r) d r d \theta \\
&= \frac{3}{8 \pi} \int_{\theta=0}^{2 \pi} \int_{r=0}^{1} 2 r-r^{2} d r d \theta \\
&= \frac{3}{8 \pi} \int_{0}^{2 \pi}\left(\left.r^{2}\right|_{0} ^{1}-\left.\frac{r^{3}}{3}\right|_{0} ^{1}\right) d \theta \\
&= \frac{3}{8 \pi} \int_{0}^{2 \pi}\left(1-\frac{1}{3}\right) d \theta=\frac{3}{8 \pi} \times \frac{2}{3} \int_{0}^{2 \pi} d \theta \\
&= \frac{1}{4 \pi} \times 2 \pi
\end{aligned}
$$

Defn: The marginal density functions of X alone and y alone are

$$
g(x)=\int_{-\infty}^{\infty} f(x, y) d y, h(y)=\int_{-\infty}^{\infty} f(x, y) d x
$$

Example $=$ see figures for marginal and conditional density examples with the cone shaped density Ruction Rom previous example

The areas under the red curves are the values for the marginal distribution $g(x)$ evaluated at $x=-1, x=0$ and $x=1$

If we draw the red curves at each value of x, and for each compute the area underneath, we get the marginal distribution $\mathrm{g}(\mathrm{x})$ which we can then plot as a graph.

Once normalized by dividing with the appropriate value of $g(x)$, the red curves are the conditional densities $f_{Y}(y \mid x=-1), f_{Y}(y \mid x=0)$ and $f_{Y}(y \mid x=1)$.

The areas under the green curves are the values for the marginal distribution $\mathrm{h}(\mathrm{y})$ evaluated at $\mathrm{y}=-1, \mathrm{y}=0$ and $\mathrm{y}=1$. Again if we normalize these curves by dividing with the appropriate value of $\mathrm{h}(\mathrm{y})$, the green curves become the conditional densities $f_{X}(x \mid y=-1), f_{X}(x \mid y=0)$ and $f_{X}(x \mid y=1)$.

Example:

$$
\begin{gathered}
f(x, y)=\left\{\begin{array}{cc}
\frac{1}{\pi}, & x^{2}+y^{2} \leq 1 \\
0, & \text { elsewhere }
\end{array}\right. \\
V_{0}=\frac{1}{\pi} \cdot \pi=1
\end{gathered}
$$

Compute the marginal densities.

Imagine collapsing the y axis. $g(x)$ becomes the area under $f(x, y)$ for any given x.

length of line Prom

$$
\begin{aligned}
& \left(x_{0},-\sqrt{1-x_{0}^{2}}\right) \text { to } \\
& \left(x_{0}, \sqrt{1-x_{0}^{2}}\right) \text { is } \\
& 2 \sqrt{1-x_{0}^{2}}
\end{aligned}
$$

Therefore $g(x)=\left\{\begin{array}{cl}\frac{2}{\pi} \sqrt{1-x^{2}}, & -1 \leq x \leq 1 \\ 0, & \text { elsewhere. }\end{array}\right.$
Also che to symmetry $h(y)=\left\{\begin{array}{c}\frac{2}{\pi} \sqrt{1-y^{2}},-1 \leq y \leq 1 \\ 0, \text { elsewtec }\end{array}\right.$

You can check that $g(x)$ is a proper density function. We must have $\int_{-\infty}^{\infty} g(x) d x=1$

$$
\int_{-\infty}^{\infty} g(x) d x=\frac{2}{\pi} \int_{-1}^{1} \sqrt{1-x^{2}} d x
$$

From on integral table $\int \sqrt{1-x^{2}} d x=\frac{x \sqrt{1-x^{2}}}{2}+\frac{\tan -1 \frac{x}{\sqrt{1-x^{2}}}}{2}$

$$
\begin{aligned}
& \text { So we have } \left.\begin{array}{l}
\frac{2}{\pi}\left(\left.\frac{x \sqrt{1-x^{2}}}{2}\right|_{-1} ^{1}+\left.\frac{\tan ^{-1} \frac{x}{\sqrt{1-x^{2}}}}{2}\right|_{-1} ^{1}\right) \\
=\frac{2}{\pi}\left(0-0+\tan ^{-1} \frac{1}{0}-\tan ^{-1}-\frac{1}{0}\right. \\
2
\end{array}\right) \\
& =\frac{2}{\pi}\left(\frac{\pi / 2-(-\pi / 2)}{2}\right)=\frac{2}{\pi} \times \frac{\pi}{2}=1
\end{aligned}
$$

Lets compute the conditional density $f_{y}(y \mid x)$ for our example.
Defu $=$ The conditional density Ructions are defined as

$$
\begin{gathered}
f_{y}(y \mid x)=\frac{f(x, y)}{g(x)}, g(x)>0 \\
f_{X}(x \mid y)=\frac{f(x, y)}{h(y)}, h(y)>0 \\
f(x, y)=\left\{\begin{array}{l}
\frac{1}{\pi}, x^{2}+y^{2} \leq 1 \\
0, \text { elsewhere }
\end{array}\right. \\
g(x)=\left\{\begin{array}{l}
\frac{2}{\pi} \sqrt{1-x^{2}},-1 \leq x \leq 1 \\
0, \text { elsewhere }
\end{array}\right.
\end{gathered}
$$

a) From the defiviturn $f_{y}(y \mid x)$ is defined only for those values of x for which $g(x)>0$. For ar example this is $-1<x<1$.
b) Once we fix a particular $x, F_{y}(y \mid x)$ at that x is the cross section of $f(x, y)$ at that x normalized by the area underneath the cross-section which is $g(x)$
With x fixed we can have the formula for the cross-section

$$
\frac{1}{\pi} \text { for } y^{2} \leq 1-x^{2}
$$

0 otherwise.

From this formula:

$$
f_{y}(y \mid-0.5)=\left\{\begin{array}{cl}
\frac{1}{2 \sqrt{.75}},-\sqrt{.75} \leq y \leq \sqrt{.75} \\
0, \text { otherwise }
\end{array}\right.
$$

at $x=0 \quad f_{y}(y \mid 0)= \begin{cases}\frac{1}{2},-1 \leq y \leq 1 \\ 0, \text { elsewhere }\end{cases}$

Notice that this graph is wider and lower than the graph for

$$
P_{y}(y \mid-0.5)
$$

at $x=0.9$

This graph is different from both graphs we drew above

Since the conditional probability a $F_{y}(y \mid x)$ depends on x in this case we can y say that the random variables X and Y are NOT independent.
The same is the with X and Y in the example before with the cone shaped $\hat{f}(x, y)$.

Ref Independent random variables: If $f_{x}(x / y)$ does not depend on y, then $f_{x}(x \mid y)=g(x)$ and also $f(x, y)=g(x) h(y)$.
Proof: By definition of $f_{x}(x \mid y)=\frac{f(x, y)}{h(y)}$ we get

$$
\begin{aligned}
& f(x, y)=f_{x}(x \mid y) h(y) \cdot \text { Also by defn. } \\
& g(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{-\infty}^{\text {substitute }} f_{x}(x \mid y) h(y) d y \\
& =f_{x}(x \mid y) \int_{-\infty}^{\infty} h(y) d y \text { since } f_{x}(x \mid y) \text { dies } \\
& =f_{x}(x \mid y)
\end{aligned}
$$

Same proof to show $f_{y}(y \mid x)=h(y)$ if $f_{y}(y / x)$ does NOT depend on x.
a) $f(x, y)=g(x) h(y)$
X and Y inclependent random variables
b) $F_{x}(x \mid y)=g(x)$
c) $f_{Y}(y \mid x)=h(y)$
for all (x, y)

* Showing one of a, b or c holds for all (x, y) is enough to prove X, Y indeperdent
* Showing one of a, b or 4 does NOT hold for some (x, y) is enough to show X, Y dependent
* If X, Y independent then all of a, b and C hold.

Example: Uniform distribution

$$
f(x, y)= \begin{cases}\frac{1}{A B}, & 0 \leq x \leq A \text { and } \\ 0 \leq y \leq B \\ 0, & \text { elsewhere }\end{cases}
$$

NOTE: The deft. of $F_{Y}(y \mid x)$ requires $g(x)>0$ so $\mathrm{F}_{Y}(y \mid x)$ exists only For $0 \leq x \leq A$ in this example. So when we say the crosssection is the same Bor all x, we really mean for all x in the range $0 \leq x \leq A$
The cross-section is the same for all x meaning $f_{y}(y \mid x)$ does not depend on x which in turn means X, Y independent. Lets prove it.
Marginal densities: $g(x)=\int_{-\infty}^{\infty} P(x, y) d y=\int_{0}^{B} \frac{1}{A B} d y=1 / A$

$$
\text { if } 0 \leq x \leq \mathbb{A}
$$

otherwise $g(x)=\int_{-\infty}^{\infty} 0 d y=0$

$$
\begin{aligned}
& \text { so } g(x)=\left\{\begin{array}{cl}
1 / A, & 0 \leq x \leq A \\
0, & \text { otherwise }
\end{array}\right. \\
& h(y)=\int_{-\infty}^{\infty} f(x, y) d y= \begin{cases}\int_{0}^{A} \frac{1}{A B} d x=1 / B, 0 \leq y \leq B \\
\int_{-\infty}^{\infty} 0 d x=0, \text { elsewhere. }\end{cases}
\end{aligned}
$$

$$
g(x) h(y)=\left\{\begin{array}{ll}
1 / A \times 1 / B & \text { if } 0 \leq x \leq A,
\end{array} \text { and } 0 \leq y \leq B\right.
$$

O , elsewhere.
This is exactly $f(x, y)$. INDEPENDENT.

Example: Let X and Y denote the position of an electron in the 2 dimensional Cartesian plane. Due to the uncertainty principle X and Y can't be measured exactly and are random variables. You are told that the measurement along the X-axis is independent from the measurement along the Y-axis. Furthermore, let X have a normal marginal density function with μ_{X}, σ_{X} and let Y have a normal marginal density function with μ_{Y}, σ_{Y}. What is the joint density function for X, Y ?
Solution: The marginal density function for X is

$$
g(x)=\frac{1}{\sqrt{2 \pi} \sigma_{X}} e^{-\frac{\left(x-\mu_{X}\right)^{2}}{2 \sigma_{X}^{2}}}
$$

The marginal density function for Y is

$$
h(y)=\frac{1}{\sqrt{2 \pi} \sigma_{Y}} e^{-\frac{\left(y-\mu_{Y}\right)^{2}}{2 \sigma_{Y}^{2}}}
$$

Using independence, we have $f(x, y)=g(x) h(y)$, so:

$$
\begin{aligned}
f(x, y) & =\frac{1}{\sqrt{2 \pi} \sigma_{X}} e^{-\frac{\left(x-\mu_{X}\right)^{2}}{2 \sigma_{X}^{2}}} \frac{1}{\sqrt{2 \pi} \sigma_{Y}} e^{-\frac{\left(y-\mu_{Y}\right)^{2}}{2 \sigma_{Y}^{2}}} \\
& =\frac{1}{2 \pi \sigma_{X} \sigma_{Y}} e^{-\frac{\left(x-\mu_{X}\right)^{2}}{2 \sigma_{X}^{2}}-\frac{\left(y-\mu_{Y}\right)^{2}}{2 \sigma_{Y}}}
\end{aligned}
$$

If we have $\sigma_{X}=\sigma=\sigma$, the joint density simplifies to

$$
f(x, y)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{\left(x-\mu_{X}\right)^{2}+\left(y-\mu_{Y}\right)^{2}}{2 \sigma^{2}}}
$$

Here is what the joint density function $f(x, y)$ looks like for $\mu_{X}=1, \mu_{Y}=2$ and $\sigma_{X}=\sigma_{Y}=1$.

$f(x, y)$

Contours of constant probability.

Here is what the joint density function $f(x, y)$ looks like for $\mu_{X}=1, \mu_{Y}=2$ and $\sigma_{X}=0.3, \sigma_{Y}=1$.

$f(x, y)$

Contours of constant probability.

In this case there is more uncertainty in the Y position than the X position.

Example: (Example 3.19 textbook)

$$
f(x, y)=\left\{\begin{aligned}
10 x y^{2} & , 0<x<y<1 \\
0 & , \text { elsewhere }
\end{aligned}\right.
$$

a) Find the marginal densities $g(x), h(y)$ and the conditional density $f_{y}(y \mid x)$.
Lets first sketch $\&(x, y)$

$$
\begin{aligned}
& g(x)=\int_{-\infty}^{\infty} f(x, y) d y \\
& =\int^{1} 10 x y^{2} d y \\
& \left.\rightarrow \frac{10}{3} x y^{3}\right|_{x} ^{1}=\frac{10}{3} x\left(1-x^{3}\right)
\end{aligned}
$$

Paint A:
Point $B=(x, 1)$
$x=y$ Pram
slope of line
connectry $(0,0)$ to $(1,1)$
Area of shaded cross-section is $g(x)$ bor a particular x

$$
g(x)= \begin{cases}\frac{10}{3} x\left(1-x^{3}\right)^{3} & , 0<x<1 \\ 0 & , \text { elsewhere }\end{cases}
$$

$$
(x, y)=(0, y) \quad(x, y)=(y, y)
$$

Area of shaded cross - section is $h(y)$ for that particular y

$$
\begin{aligned}
& h(y)= \begin{cases}5 y^{4}, & 0<y<1 \\
0, & \text { elsewhere } \\
0, & \\
f_{y}(y \mid x)=\frac{f(x, y)}{g(x)}=\frac{10 x y^{2}}{\frac{10}{3} x\left(1-x^{3}\right)}=\frac{3 y^{2}}{1-x^{3}} \text { for } 0<x<y<1\end{cases}
\end{aligned}
$$

Notice that $f_{y}(y \mid x)$ depends on x so X and Y are NoT independent. Equivalently, could show the same From $f(x, y) \neq g(x) h(y)$.
b) Find the probability that $Y>1 / 2$ given $X=0.25$

$$
\begin{aligned}
& P(Y>1 / 2 \mid X=0.25)=\int_{1 / 2}^{\infty} f_{y}(y \mid x=0.25) d y \\
& =\int_{1 / 2}^{1} \frac{3 y^{2}}{1-0.25^{3}} d y=\frac{8}{9}
\end{aligned}
$$

Note:

$$
\begin{aligned}
& P(a<X<b \mid Y=y)=\int_{a}^{b} f_{X}(x \mid y) d x \\
& P(a<Y<b \mid X=x)=\int_{a}^{b} f_{Y}(y \mid x) d y
\end{aligned}
$$

Example 3.20 From textbook

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x\left(1+3 y^{2}\right)}{4}, & 0<x<2,0<y<1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

a) Find the marginal densities $g(x), h(y)$ and the conditional density $f_{x}(x / y)$.
Instead of sketching $f(x, y)$ lets sketch its botprint:

$$
\begin{aligned}
g(x) & =\int_{-\infty}^{\infty} f(x, y) d y=\int_{0}^{1} \frac{x\left(1+3 y^{2}\right)}{4} d y \\
& =\frac{x}{4}\left(\left.y\right|_{0} ^{1}+\left.\frac{y^{3}}{4 k}\right|_{0} ^{1}\right)=\frac{x}{2} \text { for } 0<x<2
\end{aligned}
$$

atsive $0<x<2 \quad g(x)=0$

$$
\begin{aligned}
h(y) & =\int_{-\infty}^{\infty} f(x, y) d x=\int_{0}^{2} \frac{x\left(1+3 y^{2}\right)}{4} d x \\
& =\frac{1+3 y^{2}}{4} \int_{0}^{2} x d x=\frac{1+3 y^{2}}{4}\left(\left.\frac{x^{2}}{2}\right|_{0} ^{2}\right) \\
& =\frac{1+3 y^{2}}{2}, 0<y<1
\end{aligned}
$$

Notice $f(x, y)=g(x) h(y)$ which means X and Y
are independent. $f_{X}(x \mid y)=g(x)$ since X and Y are independent
b) Compute the prob that X is between $1 / 4$ and $1 / 2$ given that $Y=1 / 3$.

$$
\begin{aligned}
& \left.P\left(\frac{1}{4}<x<\frac{1}{2}\right) y=1 / 3\right)=\int_{1 / 4}^{1 / 2} f_{x}(x \mid y=1 / 3) d x \\
& =\int_{1 / 4}^{1 / 2} \frac{x}{2} d x=\left.\frac{x^{2}}{4}\right|_{1 / 4} ^{1 / 2}=\frac{1}{46}-\frac{1}{16}=\frac{3}{64}
\end{aligned}
$$

