NAME:

ECE 3530 PRACTICE MIDTERM 2 Show your work.

Closed book, limited notes (1 regular size sheet front&back). No laptops.

1. A continuous random variable X has the probability density function

$$f(x) = \begin{cases} 0, & x < 1\\ hx - h, & 1 \le x \le 2\\ 3h - hx, & 2 \le x \le 3\\ 0, & x > 3 \end{cases}$$

which can be graphed as

(a) Find h which makes f(x) a valid probability density function.

(b) Find the cumulative distribution function F(x).

- 2. Random variable X has a normal probability distribution with mean 10.3 and standard deviation 2.
 - (a) Compute the numerical value of $P(7.2 \le X \le 13.8)$.
 - (b) Find a value d such that X is in the range $10.3 \pm d$ with probability 0.999.
 - (c) Let Y be a random variable with variance $\sigma_Y^2 = 6$ and independent of X. Compute the variance of 5X 3Y.

3. Let X and Y be two continuous random variables with the joint density function

$$f(x,y) = \begin{cases} x+y, & 0 \le x \le 1 \text{ and } 0 \le y \le 1 \\ 0, & elsewhere \end{cases}$$

- (a) Are the random variables X and Y independent? Justify your answer.
- (b) Compute the numerical value of $P(Y \ge \frac{1}{2}, X \le \frac{1}{2})$.

4. Let X be the sent bit and Y the received bit in a binary communications channel. The joint probability distribution f(x, y) is given as:

f(x,y)	x=0	x=1
y=0	0.4	0.1
y=1	0.1	0.4

- (a) Compute the numerical value of P(Y = 1 | X = 0)
- (b) Compute the covariance of random variables X, Y.
- (c) When a single bit is sent and received, we say that an error has occurred if $Y \neq X$. If a 8-bit long message is sent over this communication channel, what is the probability that 1 or less errors will occur?