NAME:

ECE 3530 PRACTICE MIDTERM 2 Show your work.

Closed book, limited notes (1 regular size sheet front\&back). No laptops.

1. A continuous random variable X has the probability density function

$$
f(x)=\left\{\begin{array}{lr}
0, & x<1 \\
h x-h, & 1 \leq x \leq 2 \\
3 h-h x, & 2 \leq x \leq 3 \\
0, & x>3
\end{array}\right.
$$

which can be graphed as

(a) Find h which makes $f(x)$ a valid probability density function.
(b) Find the cumulative distribution function $F(x)$.
2. Random variable X has a normal probability distribution with mean 10.3 and standard deviation 2.
(a) Compute the numerical value of $P(7.2 \leq X \leq 13.8)$.
(b) Find a value d such that X is in the range $10.3 \pm d$ with probability 0.999 .
(c) Let Y be a random variable with variance $\sigma_{Y}^{2}=6$ and independent of X. Compute the variance of $5 X-3 Y$.
3. Let X and Y be two continuous random variables with the joint density function

$$
f(x, y)=\left\{\begin{array}{lr}
x+y, & 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

(a) Are the random variables X and Y independent? Justify your answer.
(b) Compute the numerical value of $P\left(Y \geq \frac{1}{2}, X \leq \frac{1}{2}\right)$.
4. Let X be the sent bit and Y the received bit in a binary communications channel. The joint probability distribution $f(x, y)$ is given as:

$f(x, y)$	$x=0$	$x=1$
$y=0$	0.4	0.1
$y=1$	0.1	0.4

(a) Compute the numerical value of $P(Y=1 \mid X=0)$
(b) Compute the covariance of random variables X, Y.
(c) When a single bit is sent and received, we say that an error has occurred if $Y \neq X$. If a 8-bit long message is sent over this communication channel, what is the probability that 1 or less errors will occur?

