ECE 3530 PRACTICE MIDTERM 2 SOLUTIONS

1. A continuous random variable X has the probability density function:

$$
f(x)=\left\{\begin{array}{lr}
0, & x<1 \\
h x-h, & 1 \leq x \leq 2 \\
3 h-h x, & 2 \leq x \leq 3 \\
0, & x>3
\end{array}\right.
$$

which can be graphed as

(a) Find h which makes $f(x)$ a valid probability density function.

The area underneath the triangle is $\frac{1}{2}(3-1) h=h$ which must equal 1 to satisfy $\int_{-\infty}^{\infty} f(x) d x=1$. Therefore $h=1$. You can of course solve this problem by explicitly integrating the function $f(x)$ but it is much simpler to use geometry and the area of the triangle.
(b) Find the cumulative distribution function $F(x)$.

First write down the density function after substituting $h=1$:

$$
f(x)=\left\{\begin{array}{lr}
0, & x<1 \\
x-1, & 1 \leq x \leq 2 \\
3-x, & 2 \leq x \leq 3 \\
0, & x>3
\end{array}\right.
$$

There are 4 cases:

- $x<1$: Here $F(x)=0$.
- $1 \leq x \leq 2$:

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} f(t) d t \\
& =\int_{-\infty}^{1} 0 d t+\int_{1}^{x}(t-1) d t
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\frac{t^{2}}{2}\right|_{1} ^{x}-\left.t\right|_{1} ^{x} \\
& =\frac{x^{2}}{2}-\frac{1}{2}-x+1=\frac{x^{2}}{2}-x+\frac{1}{2}
\end{aligned}
$$

- $2 \leq x \leq 3$:

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} f(t) d t \\
& =\int_{-\infty}^{1} 0 d t+\int_{1}^{2}(t-1) d t+\int_{2}^{x}(3-t) d t \\
& =F(2)+\int_{2}^{x}(3-t) d t \\
& =\left(\frac{2^{2}}{2}-2+\frac{1}{2}\right)+\left.3 t\right|_{2} ^{x}-\left.\frac{t^{2}}{2}\right|_{2} ^{x} \\
& =\frac{1}{2}+3 x-6-\frac{x^{2}}{2}+2=-\frac{x^{2}}{2}+3 x-\frac{7}{2}
\end{aligned}
$$

Notice that $F(3)=1$ which is what is required.

- $x>3$: Here $F(x)=1$

So

$$
F(x)=\left\{\begin{array}{lr}
0, & x<1 \\
\frac{x^{2}}{2}-x+\frac{1}{2}, & 1 \leq x \leq 2 \\
-\frac{x^{2}}{2}+3 x-\frac{7}{2}, & 2 \leq x \leq 3 \\
1, & x>3
\end{array}\right.
$$

2. Random variable X has a normal probability distribution with mean 10.3 and standard deviation 2.
(a) Compute the numerical value of $P(7.2 \leq X \leq 13.8)$.

We first convert to a standard normal distribution with $Z=\frac{X-10.3}{2}$. When $X=7.2$, $Z=\frac{7.2-10.3}{2}=-1.55$ and $X=13.8, Z=\frac{13.8-10.3}{2}=1.75$. Therefore,

$$
P(7.2 \leq X \leq 13.8)=P(-1.55 \leq Z \leq 1.75)=P(Z \leq 1.75)-P(Z \leq-1.55)
$$

From the attached table we find that $P(Z \leq 1.75)=0.9599$ and $P(Z \leq-1.55)=$ 0.0606 . So the answer is $0.9599-0.0606=0.8993$.
(b) Find a value d such that X is in the range $10.3 \pm d$ with probability 0.999 .

We want $P(10.3-d \leq X \leq 10.3+d)=0.999$. Again converting to standard normal distribution: when $X=10.3-d, Z=\frac{10.3-d-10.3}{2}=-0.5 d$ and when $X=10.3+d$, $Z=\frac{10.3+d-10.3}{2}=0.5 d$. So we are looking for a d such that $P(-0.5 d \leq Z \leq 0.5 d)=$ 0.999 :

$$
\begin{aligned}
P(-0.5 d \leq Z \leq 0.5 d) & =1-(P(Z<-0.5 d)+P(Z>0.5 d)) \\
0.999 & =1-2 P(Z<-0.5 d) \\
P(Z<-0.5 d) & =\frac{1-0.999}{2}=0.0005
\end{aligned}
$$

From the attached table we find that $-0.5 d=-3.3$, so $d=6.6$.
(c) Let Y be a random variable with variance $\sigma_{Y}^{2}=6$ and independent of X. Compute the variance of $5 X-3 Y$.
$5 X-3 Y$ is a linear combination of the random variables X and Y. The variance of X is 4 (the square of its standard deviation). Using the fact that X and Y are independent we find that

$$
\sigma_{5 X-3 Y}^{2}=25 \sigma_{X}^{2}+9 \sigma_{Y}^{2}=25 \times 4+9 \times 6=154
$$

3. Let X and Y be two continuous random variables with the joint density function

$$
f(x, y)=\left\{\begin{array}{lr}
x+y, & 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

(a) Are the random variables X and Y independent? Justify your answer. Lets compute the marginal density functions:

$$
\begin{aligned}
g(x) & =\int_{y=-\infty}^{\infty} f(x, y) d y \\
& =\int_{y=0}^{y=1}(x+y) d y \\
& =\left.x y\right|_{y=0} ^{y=1}+\left.\frac{y^{2}}{2}\right|_{y=0} ^{y=1} \\
& =x+\frac{1}{2} \\
h(y) & =\int x=-\infty^{\infty f}(x, y) d x \\
& =\int_{x=0}^{x=1}(x+y) d x \\
& =\left.\frac{x^{2}}{2}\right|_{x=0} ^{x=1}+\left.x y\right|_{x=0} ^{x=1} \\
& =\frac{1}{2}+y
\end{aligned}
$$

For independence we must have $f(x, y)=g(x) h(y)$, which doesn't hold in this case. So X and Y are NOT independent.
(b) Compute the numerical value of $P\left(Y \geq \frac{1}{2}, X \leq \frac{1}{2}\right)$.

$$
\begin{aligned}
P(Y \geq 1 / 2, X \leq 1 / 2) & =\int_{y=1 / 2}^{y=1} \int_{x=0}^{x=1 / 2}(x+y) d x d y \\
& =\int_{y=1 / 2}^{y=1}\left(\left.\frac{x^{2}}{2}\right|_{x=0} ^{x=1 / 2}+\left.x y\right|_{x=0} ^{x=1 / 2}\right) d y
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{y=1 / 2}^{y=1} \frac{1}{8}+\frac{y}{2} d y \\
& =\left.\frac{y}{8}\right|_{y=1 / 2} ^{y=1}+\left.\frac{y^{2}}{4}\right|_{y=1 / 2} ^{y=1} \\
& =\frac{1}{8}-\frac{1}{16}+\frac{1}{4}-\frac{1}{16}=\frac{1}{4}
\end{aligned}
$$

4. Let X be the sent bit and Y the received bit in a binary communications channel. The joint probability distribution $f(x, y)$ is given as:

$\mathrm{f}(\mathrm{x}, \mathrm{y})$	$\mathrm{x}=0$	$\mathrm{x}=1$
$\mathrm{y}=0$	0.4	0.1
$\mathrm{y}=1$	0.1	0.4

(a) Compute the numerical value of $P(Y=1 \mid X=0)$

$$
P(Y=1 \mid X=0)=\frac{f(0,1)}{g(0)}=\frac{0.1}{0.4+0.1}=0.2
$$

(b) Compute the covariance of random variables X, Y.
$\sigma_{X Y}^{2}=E[X Y]-\mu_{X} \mu_{Y} ;$ therefore we first need to compute μ_{X}, μ_{Y} and $E[X Y]$.

$$
\begin{gathered}
\mu_{X}=0 \times 0.4+0 \times 0.1+1 \times 0.1+1 \times 0.4=0.5 \\
\mu_{Y}=0 \times 0.4+1 \times 0.1+0 \times 0.1+1 \times 0.4=0.5 \\
E[X Y]=0 \times 0.4+0 \times 0.1+0 \times 0.1+1 \times 0.4=0.4
\end{gathered}
$$

Therefore

$$
\sigma_{X Y}^{2}=0.4-0.5 \times 0.5=0.15
$$

(c) When a single bit is sent and received, we say that an error has occurred if $Y \neq X$. If a 8-bit long message is sent over this communication channel, what is the probability that 1 or less errors will occur?
First find the probability of making an error when a single bit is sent:

$$
P(X \neq Y)=P(X=0, Y=1)+P(X=1, Y=0)=0.2
$$

Each bit sent is a Bernoulli trial with $P($ error $)=0.2$. Then the number of errors when 8 bits are sent follow a Binomial distribution $b(x ; p=0.2, n=8)$. The probability of one or less errors in 8 bits is found as

$$
\sum_{x=0}^{x=1} b(x ; p=0.2, n=8)={ }_{8} C_{0} \times 0.2^{0} \times 0.8^{8}+{ }_{8} C_{1} \times 0.2^{1} \times 0.8^{7} \approx 0.5033
$$

