1. Textbook exercise 3.49. Additionally answer the following question:
(d) Are X and Y independent?
2. Textbook exercise 3.42. Additionally answer the following question:
(b) Are X and Y independent?
3. Let X and Y be two jointly distributed continuous random variables representing voltages measured in Volts at two different nodes of a circuit. X has the marginal density function

$$
g(x)= \begin{cases}\frac{2 x+1}{2}, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

You are also given the conditional density function

$$
f_{Y}(y \mid x)=\left\{\begin{array}{lr}
\frac{2(x+y)}{2 x+1}, & 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) Compute $P(Y \leq 0.5 \mid X=0.5)$ the probability that Y is less than or equal to 0.5 given that we know $X=0.5$.
(b) Compute the probability that the voltage X is in the range $1 / 4 \leq X \leq 1 / 2$ and the voltage Y is less than $1 / 2$ at the same time. In other words compute the probability $P\left(\frac{1}{4} \leq X \leq \frac{1}{2}, Y \leq \frac{1}{2}\right)$.
(c) Compute the covariance of X and Y.
4. A game consists of rolling a pair of dice, one red and one blue. Let X denote the outcome of the red dice and let Y denote the outcome of the blue dice. X and Y are independent random variables. Both dice are rigged and they have the following marginal distrubtions:

$$
g(x)=\left\{\begin{array}{lr}
1 / 4, & x=1,2 \\
1 / 8, & x=3,4,5,6 \\
0, & \text { otherwise }
\end{array} \quad \quad \quad(y)=\left\{\begin{array}{lr}
1 / 3, & y=1,2 \\
1 / 12, & y=3,4,5,6 \\
0, & \text { otherwise }
\end{array}\right.\right.
$$

(a) Make a table showing the joint distribution $f(x, y)$.
(b) Find the probability that the sum of the two dice is greater than 8 .
5. Discrete random variables X and Y have the following joint probability distribution

$\mathrm{f}(\mathrm{x}, \mathrm{y})$	$\mathrm{x}=0$	$\mathrm{x}=1$
$\mathrm{y}=0$	0.1	0
$\mathrm{y}=1$	0.1	0.1
$\mathrm{y}=2$	0.1	0.2
$\mathrm{y}=3$	0	0.4

(a) Compute the correlation coefficient $\rho_{X Y}$.
(b) Compute the probability $P(Y \geq 2, X=0)$.
(c) Compute the probability $P(Y \geq 2 \mid X=0)$.
(d) If this is a game and you win $\$\left(100 X+10 Y^{2}\right)$ each time you play this game. What is the expected amount you win per game?
(e) There is a third random variable Z which is independent from Y. The mean and variance for Z are given as $\mu_{Z}=1$ and $\sigma_{Z}^{2}=0.5$. Compute the mean and variance of the linear combination $2 Y-4 Z$.

