Consider a company manufacturing various types of integrated circuits (IC). Let S be the sample space of all possible IC types that any given product manufactured by this company can be. Lets define the following events:

- A: The IC uses 32-bit technology
- B: The IC uses 64-bit technology
- C: The IC is a SDRAM (an older type of memory chip)
- D: The IC is a RDRAM (a newer type of memory chip)
- E: The IC is manufactured at the company's plant in Taiwan

We are also given the following information:

- All chips manufactured by this company use either 32-bit or 64-bit technology.
- P(A) = 0.4, P(C) = 0.1, P(D) = 0.5, P(E) = 0.45, $P(A \cap C) = 0.1$, $P(A \cap D) = 0.2$, $P(A \cap E) = 0.15$, $P(D \cap E) = 0.25$ and $P(A \cap D \cap E) = 0.05$.
- 1. Prove that the company does not produce any 64-bit SDRAM chips. *Hint: Show that the probability of such a chip is* 0.
- 2. Draw the Venn diagram showing all events. Note: Show all possible intersections unless you are sure two events don't intersect. For instance, a chip can't be a SDRAM and a RDRAM at the same time.
- 3. Compute $P(B \cap C \cap D)$.
- 4. Compute $P(D \cup E \cup A)$.
- 5. Compute $P(B \cap D' \cap E')$. Hint: Use the Venn diagram.

(5) a)
$$6y-bit \in SPRAM chup \implies B n C$$

we want to show $P(Bnc) = 0$
Since all chips are either $32-bit (A)$ or $6y-bit (B)$,
events A and B form a partition of S. Then, using
the rule of total probability:
 $P(C) = P(C \cap A) + P(B \cap C)$
 $0.1 = 0.1 + P(B \cap C) \Rightarrow P(BnC) = D$.
b)
 $A = 0.1 + P(B \cap C) \Rightarrow P(BnC) = D$.
Notice that.
 $A, B B in partition$
 $C \cap B = \emptyset$ as shown in
pert a
 $C \cap D = \emptyset$ since a
chip can't both be a
 $SP(AM and a RPRIM at the same time)$
c) $B \cap C \cap D = (B \cap C) \cap D = \emptyset \cap D = \emptyset$
 $S = P(B \cap C \cap D) = 0$
d) $P(D \cup E \cup A) = P(D) + P(E) + P(A) - P(D \cap E) A)$
 $= 0.5 + 0.4 - 0.25 - 6.2 - 0.55 + 0.55$
 $P(B \cap D \cap E') = 1 - P(D \cap E) - P(D \cap E) A)$
 $P(B \cap P' \cap E') = 1 - P(B \cap D \cup E') - P(B \cap B') - P($