Consider a company manufacturing various types of integrated circuits (IC). Let \mathcal{S} be the sample space of all possible IC types that any given product manufactured by this company can be. Lets define the following events:

- A : The IC uses 32-bit technology
- B : The IC uses 64-bit technology
- C : The IC is a SDRAM (an older type of memory chip)
- D : The IC is a RDRAM (a newer type of memory chip)
- E: The IC is manufactured at the company's plant in Taiwan

We are also given the following information:

- All chips manufactured by this company use either 32-bit or 64 -bit technology.
- $P(A)=0.4, P(C)=0.1, P(D)=0.5, P(E)=0.45, P(A \cap C)=0.1$, $P(A \cap D)=0.2, P(A \cap E)=0.15, P(D \cap E)=0.25$ and $P(A \cap D \cap E)=0.05$.

1. Prove that the company does not produce any 64-bit SDRAM chips. Hint: Show that the probability of such a chip is 0 .
2. Draw the Venn diagram showing all events. Note: Show all possible intersections unless you are sure two events don't intersect. For instance, a chip can't be a SDRAM and a RDRAM at the same time.
3. Compute $P(B \cap C \cap D)$.
4. Compute $P(D \cup E \cup A)$.
5. Compute $P\left(B \cap D^{\prime} \cap E^{\prime}\right)$. Hint: Use the Venn diagram.
(5) a) 64 -bit SDRAM chip $\Rightarrow B \cap C$ we wart to show $P(B \cap C)=0$
Since all chips are either 32 -bit (A) or 64-bit (B), events A and B form a partition of S. Then, using the rule of total probability:

$$
\begin{aligned}
P(C) & =P(C \cap A)+P(B \cap C) \\
0.1 & =0.1+P(B \cap C) \Rightarrow P(B \cap C)=0 .
\end{aligned}
$$

b)

Notice that:

- A, B Perm partition
- $C \cap B=\varnothing$ as shown in port a
- $C \cap D=\phi$ since a chip con't both be a SDRAM and a RDRAM at the same time
c) $B \cap C \cap D=(B \cap C) \cap D=\phi \cap D=\varnothing$
so $P(B \cap C \cap D)=0$
d)

$$
\begin{aligned}
P(D \cup E \cup A)= & P(D)+P(E)+P(A)-P(D \cap E) \\
& -P(D \cap A)-P(E \cap A)+P(D \cap E \cap A) \\
= & 0.5+0.45+0.4-0.25-0.2-0.15
\end{aligned}
$$

From Venn diagram, notice
e)

$$
\begin{aligned}
& B^{\prime} \cap D^{\prime} \cap E^{\prime}=(A \cup D \cup E)^{\prime} \\
& \operatorname{se} P^{\left(B \cap D^{\prime} \cap E^{\prime}\right)=} \\
& 1-P(A \cup D \cup E) \\
& =1-P(D \cup E \cup A)=1-0.8=0-2 \\
& \text { Withat Yean, Diag'con (harder) } \\
& \left(B \cap D^{\prime} \cap E^{\prime}\right)^{\prime}=B^{\prime} \cup\left(D^{\prime} \cap E^{\prime}\right)^{\prime} \\
& =A \cup\left(\left(D^{\prime}\right)^{\prime} \cup\left(E^{\prime}\right)^{\prime}\right) \\
& =A \cup D \cup E
\end{aligned}
$$

