

Eric J. Lundquist

www.ece.utah.edu/~ericlundquist

Objective Statement

- Develop understanding of NEC
- Apply NEC to current applications
- Successfully use NEC to design and simulate antenna systems
- Compare and contrast NEC results to analytical solutions
- Interpret NEC results for practical application

NEC Overview

Advantages

- Algorithm for antenna modeling
- Publicly available
- No theoretical limit
- Wide application
 - Very large arrays
 - Detailed modeling of very small antenna systems

Disadvantages

- Computing time increases as number of wire segments N is increased
- Decreasing the number of wire segments N below guideline may cause computed feed-point impedance to be incorrect
- Guideline = More than 10 segments per $\lambda/2$

N>10 per $\lambda/2$

Tee Antenna Example

U

User Interface

😑 🖪 🦹	🕲 30 🛃 🛞 🖄	۱	📕 😵 1:1	🕼 🔇	
Filename	Monopole_25m_perf	ect.ou	Frequency Wavelength	1.65 181.7	Mhz mtr
Voltage	2012 + j 0 V		Current	0.05 + j 3.4	5A
Impedance Parallel form S.W.R. 50 Efficiency Radiat-eff. RDF (dB) Environment GROUND PL WHERE WIR PERFECT GF	8.39 - j 583 4.e4 // - j 583 816 100 99.99 4.88 ANE SPECIFIED. E ENDS TOUCH GRI ROUND	% %	Series comp. Parallel comp. Input power Structure loss Network loss Radiat-power	56.22 56.23 100 0 100 BE INTERPOLATE	
Comment					
Example 1 : See GetStarte *.Out loading-	Dipole in free sp ed.txt time=0.156	pace			
Seg's/patches Pattern lines Freq/Eval step Calculation tim	50 16471 s 1 e 0.813	T P s	start st heta <u>-90</u> 5 hi 03	op count step 30 91 2 60 181 2	

How NEC Works

Method of Moments

- Model constructed of thin, perfectly conducting wires
 - Plane = 2D intersecting grid of wires
 - Volume = 3D intersecting grid of wires
 - Loss = Lumped impedance resistance in each segment
- Add source (voltage or current) to a conducting segment
- Calculations in free space or ground plane vicinity
- Abbreviated MoM

Method of Moments Calculations

- Impedance matrix Z is built
- Linear system V=ZI solved
 - Currents / later used to recover the surface current distribution
 - Source impedance of defined sources also calculated
- From this first step, the three following procedures may be solved independently:
 - Exact surface current distribution
 - Near fields (E and M)
 - Also wave impedance (Z=E/H) provided in this process
 - Far fields (E and M)
 - Gain, directivity, and other parameters also provided in this process

NEC Coordinate System

The x-y plane (z = 0) is where the ground plane is located, if used.

Using 4NEC2 – A Tutorial

Download 4NEC2

Main Interface and Geometry Window

🖹 Main [V5.8.4] (F2)	🕲 Geometry (F3)		
File Edit Settings Calculate Window Show Run Help	Show View Validate Curr	ents Far-field Near-field	Wire Plot
💳 🖫 🖞 🕸 3D 🛃 C 🚕 🛞 📓 🚼 🚈 💷 🖓	EXAMPLE1.NEC		300 MHz
Filename EXAMPLE1.NEC Frequency 300 Mhz Wavelength 0.999 mtr			
Voltage Current			
Impedance Series comp. Parallel form Parallel comp.		_	
S.W.R.50 Input power W		z	
Radiat-eff. % Network loss W			
RDF[dB] 2.14 Radiat-power W			
Environment 🔽 Loads 🗖 Polar			
Free space		/ Y	
		6	
			x
Comment			
Example 1 : Dipole in free space			
See GetStarted.txt			
1			
Seg's/patches 9 start stop count step			
Pattern lines			
Calculation time s	Theta : 80	Axis : 1 mtr	Phi : 280

NEC Editor – Geometry

1	é ex	AMPLE1.	NEC - 4ne	c2 Edit									×
F	File	Cell Row:	s Selection	Options									
										Upd	<u>I</u> ns. <u>[</u>	<u>)</u> el. <u>ष</u>	
ľ		Symbols	L) U	Geometry	Sour	ce/Load	Freq.	./Ground	Ϋ́	Others	Ύ	Comment	
	Geo	ometry (S	caling=Mete	(21							🗌 Us	e wire tapering	
L	Nr	Туре	Tag	Segs	X1	Y1	Z1	X2	Y2	Z2	Radius		
L	1	Wire	1	9	0	-1	0	0	1	0	.0001		
													_8
L													
L													
L													
L													
	•											•	
L													-

- Ctrl+F4
- Wire dimensions
- Voltage sources
- Wire segments

NEC Editor – Source/Load

É	EX	AMPLE1.NI	EC - 4nec	2 Edit			-				
File	e 1	Cell Rows	Selection	Options					od Inc.		
	lanu	Symbols	Geo		Source	/Load	Freq./Ground		hers	Commer	nt
	Sou	rce(s)					Show source	: 🗌 Sho	w loads	🔲 Show Tr-	line
	Nr	Туре	Tag	Seg	(opt)	Real	Imag	Magn	Phase	(norm)	
	1	Voltage-src	1	50	0	1	0	1	0	0	
											—I
											_
											_
											_
											_
											_
	ا ا										

- Ctrl+F4
- Wire dimensions
- Voltage sources
- Wire segments

Generate Radiation Pattern

Generate (F7) [Nec2dXS1k5] 🔀
○ Use original file
 Far Field pattern Frequency sweep Near Field pattern
 ItsHF 360 degree Gain table ItsHF Gain @ 30 frequencies
Resol. 5 deg. Surface-wave Run Average Gain Test Expert settings
<u>G</u> enerate Batch <u>Ex</u> it

U

Practical Application: The Parallel and Colinear Dipole Problem

Dipole Application

- Side-by-side parallel dipole antennas
 - L = 0.4781 λ (nominal half-wave dipoles)
 - Inter-element distance d/ λ = 0.40
 - Progressive phase difference a = -144°
- Colinear dipole antennas
 - $L = 0.4781 \lambda$
 - End-to-end separation s = 0.40 λ
 - All antennas fed in phase a = -144°

Open Geometry Editor

Symbols	Geometry 500	ce/Load Freq./Ground	Others	∫ Comme
Nr Symbols and equa	tions	comment		
) i faure			
Scaling	· · · · · Wave·	Custom Easter 10,9993		
Scaling C Meters C Feet C	Inch C Wave-	Custom Pactor [0.0000]		

Program Antenna Dimensions

T

Program Source Parameters

Program Simulation Frequency

Save and run simulation

	HW18.nec - 4nec2 Edit File Cell Rows Selection Options	
Spacify	Symbols Geometry Source/Load Frequency 300 Mhz Nr steps 10 Sweep Stepsize 100	Freq./Ground Others Comment Ground screen Nr of radials Radial length mtr Wire radius mm
frequency	Environment Ground / Free-space Connect wire(s) for Z=0 to ground Main ground	Second ground Ground type Conductivity Diël constant
Choose ground or free-space	Ground type Conductivity Diël constant Use ground-screen Use second ground	Distance mtr Depth mtr C Circular boundary C Perpendicular to Y-axis
B		Now we are simulating in free- space, but ground environment can also be used

Generate Results

- Full, Vertical, or Horizontal Plane
- Select Full for 3D
- Frequency sweep and near field also possible

🛽 Generate (F7) [Nec2dXS1k5] 🛛 🔀
C Use original file
 Far Field pattern Frequency sweep Near Field pattern
 ItsHF 360 degree Gain table ItsHF Gain @ 30 frequencies
I Full C Ver. C Hor.
Resol. 5 deg. Surface-wave Run Average Gain Test Expert settings
<u>G</u> enerate Batch <u>Ex</u> it

Parameters

Select "Loads" to see input impedance at each source segment

Filename	HW1	8.out				Frequ Wave	ency length		300 .999	M	hz tr
Voltage	46	6.6 + j	33.4	V	_	Currer	nt		0.73 -	j0A	
Impedance Parallel form S.W.R.50 Efficiency	E	3.4 + 96 // 2.27 100	j 45. j 134	4	-	Series Paralle Input j Struct	: comp. el comp. power ure loss		11.68 3.96 100 0		pF pF W
Radiat-eff. RDF [dB]		6.32	_	%		Netwo Radia	ork loss t-power		-0 100	_	W
Excitation/Loa	id data	9				🗹 Lo	ads	F	Polar		
Туре	Tag	Seg	Imp	eda	nce	Voltag	е	Pwr	SWR		
EX 6: I-src	1	50	63.4	l + j	45.4	46.6 +	j 33.4	34.2	2.27		
EX 6: I-src EX 6: I-src	2	50 50	95.3	3 + j 3 + j	37.6	-40 - j i -17 + j	63.5 10.7	51.4 14.5	2.29		

Input Impedance

- In simulation, source impedance will vary depending on parameters such as wire radius, frequency, etc.
- Be sure to use parameters assigned to homework problems in order to obtain correct results

Radiation Patterns

U

3D Viewer

- Run far field simulation
- Hit F9 for 3D

Practical Application: The Yagi-Uda Antenna Problem

Yagi-Uda Application

- Five-element Yagi-Uda antenna design
 - Spacing = 0.15λ
 - Reflector length = 0.505 λ
 - Driver length = 0.476 λ
 - Three directors of length = 0.456 λ
- Verify: Are these correct?
 - Gain = 10.0 dB
 - Front-to-back ratio = 13.1 dB
 - Input impedance = 9.6 + j13.0 ohms
 - For H-plane (θ = 90° xy plane)
 - Half-power beam width HPBW = 76°
 - Side-lobe level SLL = -8.9 dB

Geometry of a K elements Yagi-Uda

Program Element Dimensions

	a la		(oognon()			V		, op	<u></u>		<u></u>
	Symbols	Ge	ometry	Source	ce/Load	Freq./	/Ground	Uth	ers	Com	ment
Geo	ometry (S	caling=Wave	- lenght							Use wire t	aperir
Nr	Туре	Tag	Segs	×1	Y1	Z1	X2	Y2	Z2	Radius	
1	Wire	1	99	0.15	0	-0.505/2	0.15	0	0.505/2	0.0025	
2	Wire	2	99	0.3	0	-0.476/2	0.3	0	0.476/2	0.0025	
3	Wire	3	99	0.45	0	-0.456/2	0.45	0	0.456/2	0.0025	
4	Wire	4	99	0.6	0	-0.456/2	0.6	0	0.456/2	0.0025	
5	Wire	5	99	0.75	0	-0.456/2	0.75	0	0.456/2	0.0025	
•											

Program Source Parameters

Standard Current so						
	ource (Peak value)			🗌 🗌 Upd	Ins.	Del.
Symbols	Geometry	Source/Load	Freq./Ground	Others	ΤΎ	Comment
Source(s)			🔽 Show source	Show loa	ads	🔲 Show Tr-line
Nr Type	Tag Seg	(opt) Re	al Imag	Magn	Phase	(norm)
1 Current-src	2 50	0	1 0	1	0	0

Generate Results

🖩 Generate (F7) [Nec2dXS1k5] 🛛 🔀
C Use original file
Far Field pattern Freq: 300 Frequency sweep Near Field pattern
 ItsHF 360 degree Gain table ItsHF Gain @ 30 frequencies
C Full C Ver. @ Hor.
Resol. 5 The 90 erage Surface-wave Gain Test
Expert settings
<u>G</u> enerate Batch E <u>x</u> it

🖹 Main [V5.8.4] (F2)							
File Edit Settings Calculate Window Show Run Help							
💳 🖫 💱 🕸 30 🛃 🛞 🥮 🏀 🙀 📕 🛃 🛍 🔍							
Filename	name HW25.out				300 Mhz		
Wavelength 0.999 mtr							
Voltage	30 + j	96.3 V	Current		3.33 + j 0 A		
Impedance	9.03 +	j 28.9	Series comp.		18.33	pF	
Parallel form	102 /	' j 31.8	Parallel comp.		16.71	pF	
S.W.R.50	7.44		Input power		100		
Efficiency Badiat-eff	100	- %	Structure loss		0	- Ŵ	
RDF [dB]	9.39	_ ^	Radiat-power	H	100		
Excitation/Load data 🔽 Loads 🔽 Polar							
Туре	Tag Seg	Impedance	Voltage	Pwr	SWR		
EX 6: I-src	2 50	9.03 + j 28.9	9 30 + j 96.3	100	7.44		
Seg's/patches Pattern lines Freq/Eval step Calculation tim	e 0.	391 s	Theta 90 Phi 0 3	top 90 360	count : 1 73	step 0 5	

Radiation Patterns

3D View

dBi 9.31

6.65 5.19

More Practical Application: The Antenna Array Problem

Array Application Problems

- 4-element array stretched along x-axis
 - Ordinary end fire array ($\alpha = -\beta d = -2p \times 0.40 = -144^{\circ}$)
 - Increased directivity end-fire array
- Inter-element spacing $d/\lambda = 0.40$
- Half-wave dipoles
- Simulate in the xy plane ($\theta = 90^{\circ}$)
 - Radiation pattern
 - Beam width between first nulls
 - Half-power beam width
 - Directivity
 - Levels of first side lobes in dB below principal lobe

How Would You Solve This Problem?

- Program array dimensions for both cases
- Run simulation for $\theta = 90^{\circ}$ in xy plane
- Obtain data from radiation pattern results
 - Directivity from angle of maximum radiation

 $D = \max\left(\frac{\text{Radiated power density}(\theta, \phi)}{\text{Total radiated power}/(4\pi)}\right)$

- Put data in table for comparison
- Refer to this and other tutorials on the website

Evaluations

Objective Statement

- Develop understanding of NEC
- Apply NEC to current applications
- Successfully use NEC to design and simulate antenna systems
- Compare and contrast NEC results to analytical solutions
- Interpret NEC results for practical application

Thank You

Numerical Electromagnetic Code (NEC) Lecture

Eric J. Lundquist

www.ece.utah.edu/~ericlundquist