UNIVERSITY OF UTAH
 ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT

31. a. Write a computer program to calculate the pattern factor $F(\theta)$ from page 6 of the Class Notes for a center-fed dipole of length L.
b. Using this computer program, calculate and plot the variation of power density $\mathrm{S} / \mathrm{S}_{\max }=\mathrm{F}^{2}(\theta) /\left.\mathrm{F}^{2}(\theta)\right|_{\max }$ for the following dipoles.
32. $\mathrm{L} / \lambda=1.6$
33. $L / \lambda=2.0$
for angles $1^{\circ}<\theta<179^{\circ}$ in steps of $\Delta \theta=2^{\circ}$.
c. Calculate the directivity D of the above two antennas using the expression for directivity D given on page 6 of the Class Notes. Use Fig. 5-5 on p. 170 of the Text to get R_{a} of these dipoles.
d. Compare the angles of maximum radiation and the directivities of the $\mathrm{L}=1.6 \lambda$ and $\mathrm{L}=$ 2.0λ antennas with those calculated for a $\mathrm{L}=1.5 \lambda$ dipole in Fig. 5-4 of the Text.
34. Calculate the gain and input impedance of a 0.625λ slot antenna at 1000 MHz . Take the width W of the slot to be 1.0 cm and the equivalent radius "a" of the complementary 0.625λ dipole to be 0.25 W (see p. 173 Fig. 5-8 of the text).
35. Calculate the gain of a slot antenna of dimensions $29 \mathrm{cms} \times 2.0 \mathrm{cms}$ for use at a frequency of 500 MHz . Calculate the center-feed-point impedance for this antenna.
36. Similar to a dipole in Fig. 5-19 of the text, a slot antenna of length $L=0.475 \lambda$ may be fed off-center to obtain an input impedance Z_{s} of the slot to be 50 ohms. Assuming that the feed point impedance of the complementary 0.475λ dipole is $70+\mathrm{j} 0$ ohms if it were fed in the center, calculate the distance Z_{f} to use to obtain $Z_{s}=50 \Omega$ for a signal frequency $\mathrm{f}=1000 \mathrm{MHz}$.
37. a. Calculate and plot the normalized $\rho^{\prime} /$ a profiles of the parabolic reflector antennas from Eq. 7-182 of the textbook

$$
\left(\rho^{\prime}\right)^{2}=4 F\left(F-z_{f}\right)
$$

for the two different values of $\mathrm{F} / \mathrm{D}=0.45,0.65$. Note that $\mathrm{D}=2 \mathrm{a}$ is the diameter of the parabolic antenna. Plot the profile of the reflector antennas in the $y z$ plane for $0 \leq \rho^{\prime} / \mathrm{a} \leq 1$.
b. Calculate the angle θ_{o} in Fig. 7-25b subtended by the parabolic antenna at the focal point for the two parabolic antennas of part a. Compare your results with the table given in Fig. 7-26 of the text.
36. a. Design a pyramidal horn antenna to obtain half-power beam widths in E- and H- planes that are one half of the angle $2 \theta_{\mathrm{o}}$ subtended by the parabolic antenna of $\mathrm{F} / \mathrm{D}=0.65$ at the focal point.
b. Using Eqs. 7-58(a) and 7-58(b), calculate and plot for the horn antenna the variation of F_{H} and F_{E} as functions of θ for $0 \leq \theta \leq \theta_{\mathrm{o}}$ where θ_{o} is the angle calculated for F/D $=0.65$ parabolic antenna in Problem 33.
c. Calculate the edge illumination factor C defined on p. 320 of the text for this horn antenna used for the $\mathrm{F} / \mathrm{D}=0.65$ parabolic antenna.
d. Can you modify the dimensions A and B of the horn antenna to obtain an edge illumination of $\mathrm{C}_{\mathrm{dB}}=-12 \mathrm{~dB}$?
e. For the optimum design of part d, compare the aperture fields E_{a} vs. ρ^{\prime} with $n=1$ and $\mathrm{n}=2$ type parabolic variations of illumination functions given on p .320 of the text.
37. A 12.5 GHz microwave communication link uses a parabolic transmitting antenna of diameter 9 feet. Calculate the power density at a receiving site a distance of 25 miles away for a transmitter power of 10 W .

What is the attenuation in decibels of the microwave link if an identical antenna is used for the receiver?

Assume $\mathrm{m}=1$ distribution of excitation for transmitting and receiving antennas.
38. Calculate the power received from the DBS by a parabolic antenna of specifications given in the following:

$$
\begin{aligned}
& \mathrm{D}=1.5^{\prime} \\
& \mathrm{f} / \mathrm{D}=0.45 \\
& \text { Frequency }=12.1-12.7 \mathrm{GHz} \text { (center frequency }=12.4 \mathrm{GHz} \text {) }
\end{aligned}
$$

It is given that the DBS radiates a power of 100 W per channel and the effective area of the transmitting antenna is $3.5 \mathrm{~m}^{2}$. The DBS is in a synchronous orbit at a distance of 40,000 km from the receiving site.

Account for the atmospheric loss in your calculations assuming an effective atmospheric height of 20 km .

What is the signal-to-noise ratio of the received signal if $\mathrm{T}_{\mathrm{o}}=300^{\circ} \mathrm{K} ; \mathrm{F}_{\mathrm{n}}=2.5$ for the receiver?
39. A radar antenna is to be designed to provide a "viewing" range of 100 miles for a 250 KW , $11,000 \mathrm{MHz}$ transmitter. The above range is desired for target cross sections as small as $20 \mathrm{~m}^{2}$ (this is a typical cross section for an aircraft). The radar receiver has a noise figure of 6.0 dB and a bandwidth of 4 MHz and the minimum signal-to-noise ratio for reliable detection is 5 .

Calculate the gain needed for the radar antenna.

