6) Pseudo code: next page.

Apply on example: \(f = ab + ac + bc, \ a > b > c \)

Original ROBDD for \(f \)

Traverse and visit \(V_{b1}, V_{b2} \)

\(f_b = a + c \)

\(\downarrow \)

Visit \(\text{high}(V_{b1}), \text{high}(V_{b2}) \)

Delete edges connecting them \(w/ \ V_{b1} \)

Set \(\text{high}(Va) \) to \(\text{high}(V_{b1}) \)

Connect \(\text{high}(V_{b1}) \) to \(Va \)

Set \(\text{low}(Va) \) to \(\text{high}(V_{b2}) \)

Connect \(\text{high}(V_{b2}) \) to \(Va \)

Delete \(V_{b1}, V_{b2} \) and all edges to them

Reduce ROBDD, delete disconnected subtrees,
merge repeated nodes
and isomorphic subtrees

\(\leftarrow \)
Problem 6

Problem description: Given a ROBDD f with variables (x_1, x_2, \ldots, x_n) which is ordered by $x_1 > x_2 > \cdots > x_n$. Our objective is to transform f to ROBDD f_{x_i} eliminating variable x_i (or $f_{x'_i}$ when x'_i is negative cofactor).

Algorithm 1 Arbitrary variable elimination algorithm on ROBDD

1: function ROBDDVarElim(f, i)
2: if v = top(f) then \(\triangleright v\) is the variable of top node
3: \hspace{1cm} return f_v or $f_{v'}$ \(\triangleright\) Directly return f_v or $f_{v'}$ when requiring negative cofactor
4: else
5: \hspace{1cm} while BFS_Traverse(f) do
6: \hspace{2cm} if idx(v) = i then \(\triangleright\) Reach nodes of variable x_i
7: \hspace{3cm} Edge>Delete(v, low(v))
8: \hspace{3cm} Edge>Delete(v, high(v)) \(\triangleright\) Delete its edges to children
9: \hspace{3cm} for all parent(v) do \(\triangleright\) For all of its parent nodes
10: \hspace{4cm} if x_i is positive cofactor then
11: \hspace{5cm} Redirect edge (parent(v), v) to (parent(v), high(v))
12: \hspace{5cm} else
13: \hspace{6cm} Redirect edge (parent(v), v) to (parent(v), low(v))
14: end if
15: \hspace{2cm} Clean-up if a node has no reference \(\triangleright\) Please refer to Example 1
16: \hspace{1cm} end for
17: \hspace{1cm} Node>Delete(v)
18: end if
19: end while
20: f_{x_i} \leftarrow Reduce(top(f)) \(\triangleright\) Please refer to Example 2
21: return f_{x_i}
22: end if
23: end function

Note: low(v), high(v), idx(v) means the child on FALSE edge, child on TRUE edge, and index of variables of this node. Their definitions and function Reduce() can be found in Graph-Based Algorithms for Boolean Function Manipulation by R. E. Bryant, which is linked on class webpage.
Example 1 (Clean-up)

\[f = ab + ac + bc, \quad a > b > c \]

calculating \(f_a \):

After deleting edge \(\langle V_a, V_{b_2} \rangle \)

\(V_{b_2} \) is node with no reference

So delete \(V_{b_2} \) and any edges connecting to it.

Example 2

\[f = ab + ac + bc, \quad a > b > c \]

calculating \(f_c \):

\[\langle V_{b_1}, 0 \rangle \]

redirect \(\langle V_{b_1}, V_c \rangle \rightarrow \langle V_{b_1}, 1 \rangle \)
\[\langle V_{b_2}, V_c \rangle \rightarrow \langle V_{b_2}, 1 \rangle \]

\(V_{b_1} \) is redundant!

\(V_{b_1} \) is redundant!

reduce, delete \(V_{b_1} \)