“Macro Impacts with Micro Technologies: Toward Distributed Environmental Monitoring via Pervasive Electronics”
By Dr. Hanseup Kim, USTAR Assistant Professor, Electrical & Computer Engineering Dept., University of Utah

Monday, January 12, 2015 at 3:05 p.m. in WEB 1230


Numerous unknown physical and chemical phenomena can be precisely analyzed by highly-accurate electro-mechanical, chemical and biological transduction mechanisms in micro and nano scales, impacting broad contexts of human life. Air quality, an emerging societal issue, is known to cause the fatalities that are twice the number of automobile fatalities in US and that are equal to deaths from breast cancer and prostate cancer combined. Hundreds of scientific studies conducted worldwide have provided evidences that polluted air has alarming adverse effects on health. Clearly, the exposure to air pollution needs to be monitored for individuals. Traditionally air quality has been measured at the community-level relying on a limited number of fixed monitoring stations (e.g. only five stations in Philadelphia), failing to model individual risks. This can be best addressed by developing a miniaturized air-quality monitoring system in a portable and wearable form, which can be enabled by micro/nano technology.

This talk discusses the challenges and recent milestones in miniaturizing a gas chromatography (GC)-based air quality monitoring system in order to enable personal-level evaluation of air quality. Specifically, this talk will discuss the scientific and engineering innovations in individual MEMS components of the integrated micro GC system. Such components include (1) micro actuators for efficient pumping of compressible gases, (2) a chemical separation technique exceeding the conventional state-of-art limit, and (3) a micro chemical sensor that is time-invariant. Future directions will be also discussed for personalized in-vitro analysis of the health impact of air pollutants by developing a “microGC to lab-on-chip” platform technology.

Speaker Biography

Dr. Hanseup Kim is a USTAR Assistant Professor of Electrical and Computer Engineering, Mechanical Engineering, and BioEngineering at the University of Utah. He received his BS degree in Electrical Engineering from Seoul National University in 1997, and his MS and Ph.D. degrees in Electrical Engineering from the University of Michigan in 2002 and 2006, respectively. Between 2006 and 2009, he was a post-doctoral research fellow at the Center for Wireless Integrated MicroSystems (WIMS) in the University of Michigan. His current research interests focus on the development of integrated micro/nano systems for environmental monitoring and healthcare research by combining micro/nanofabrication techniques, micro actuators, microfluidics for “compressible” gases, in-vitro cell culture models, and inertial/chemical sensors.

Prof. Kim is a recipient of both the prestigious NSF CAREER Award in 2012 and the DARPA Young Faculty Award in 2011. He received the Best Paper Award with eight other co-authors from the International Conference on Commercialization of Micro and Nano Systems in 2008, the First Prize in the competition and the Best Paper Award with three other co-authors from the 38th International Design Automation Conference in 2001, and Rotary Club Ambassador Scholarship in 1999. He has actively served the MEMS community as a Technical Program Committee member of the most prestigious conferences of the field, including the Hilton Head Workshop 2014 and 2012, IEEE International Conference on MEMS 2013, Transducers 2015 and PowerMEMS 2015, 2013 and 2012.