A n g e l a R a s m u s s e n
ECE 1270 - Introduction to Electrical and Computer Engineering
Instructor |
|
TA |
Dr. Angela Rasmussen Office Hours: R 9:30-11am
|
|
Lucas Thomas (Lab TA) Email:
lucacentric@gmail.com
Eso Olakunle (Grader) Email:
kunleeso@gmail.com |
Final Exam Practice (Problem 1: Linear Op Amps)
Final Exam Practice (Problem 2: Op Amp with Choice of Element)
Final Exam Practice (Problem 3: Thevenin equivalent for max power)
Final Exam Practice (Problem 4: Frequency Domain Analysis)
Final Exam Practice (Extra Exam)
Final Exam Practice (All Together) (missing) page44
All Files for Study Guide (right click and select rotate clockwise twice to get it turned right side up)
The following is NOT free from errors! Please email me if you find discrepancies in your work after triple checking it.
Homework |
Modifications |
Answers: |
Due |
|
|
|
|
#4. Should read that the voltage is the same across the 2A source(not the 3A) | 1. i1=(375/57), i2=(45/57), i3=(70/19); 2.a) 30kW, b) 5.26kohm; 4. Vc=95V, 5.I=6A; 6. I2=-60/39, V4=-240/39; 7. V1=[(Va-iaR3)*R1*R2]/[(R1+R2)R3+R1*R2]; 8.i1=iaR2/[R1(1-alpha)+R2]; 9. i1=1/4A, i2=1A, i3=2/3A, Vo=10, power_24ohm=3/2W, power_6V=-23/2; 10. i1=(10/11), i2=2, i3=(-12/11), vo=(-156/11) |
T, May 24 |
|
New figure #10. | 1. i1=2A, 2. V1=4V, 3. Req=8.9kohm, 4.i1=(isR2-Vs)/(R1+R2); 5. V1=[iaR3+Va]*R1/[R3+R1(1+alpha)], 6. power=[[alpha(ia+Va)R1]/[1+R1(1+alpha]R2]^2*R2; 7. Vo=Vs-i2R2; 8. Vo=-Vs-isR1-[isR2R3/(R2+R3)]; 9. Vo=Va+iaR3; 10. Vo=Vs+isR4 |
T, May 31 |
|
Find VB and VE for #9 and #10. |
1.c. All currents going to the right or down direction: I5k=-(4/5)mA, I6k=-(19/6)mA, I10k=-1mA, I7k=-1mA, I2k=(25/2)mA, I1k=-7mA; 3. i1=1.43A, vo=-2,856V; 4.v1=-12.2, v2=-14.6; 6. v1=5.2, v2=8.1, power_6V=-2.5W; 9. VB=18.8, VE=3,608.7 |
R, June 16 |
|
|
1. Vth=173, Rth=89.6; 2. Vth=12.5, Rth=875; 9. RTh = R1 + R2(1−α R1), Vth=Vs; 10. power=3.3mW | Sat, June 18 | |
|
1. a)Vo=-30me^-(t/(9m/10)), b) 40.5nJ; 2.i1=-7.2me^-(t/4m), b) 0J; 3.iL=2e^-(t/0.03); 4. V1=-7e^-(t/0.03); 5. a)Vc=-18+24e^-(t/800m); 6. V1=24V; 7. V1=-42.8+42.8e^-(t/4m); 8. Vo=-e^-(t/20m); 9. VL=-21e^-(t/10m), iL=-(12/5)e^-(t/10m); 10. i1=(-3/4)e^-(t/40micro) |
T, July 5 |
|
|
1. a) w_L=2.43*10^-15J, b) V1=-5.4m-48.6me^-(t/0.5n); 2. Vc=Vs+[VsR2/(R1+R2)-Vs]e^-(t/(R1+R3)C); 3. RL=1k, Power= 20.25mW; 4. i1=is/(1+alpha*R1); 5.a. Vc=Vs+(IsR1-Vs)e^-(t/R2C), b) (1/2)CVs^2; 6.a.V1=[-Is+Vs/R2](R1||R2)e^-(t/(L/R1||R2)), b) (1/2)L(Vs/R2)^2; 7.i1=-3/2A; 8.Vo=50V; 9.RL=30, Power=19.2W 10. RL=5k, power=956microW |
M, July 11 |
|
|
2.a. (200-40j)/104; b. 2.8e4e^j18.4; c. 3e^-j15; d. 1.2; e. -3.2m; 4. -196j+102; 5. 6+0.99j; 7. is(t)=126mcos(2kt+40)A; 9. v1(t)=447cos(1kt-153); 10. Ic=6.1cos(2kt-9.5)A |
T, July 19 |
|
|
1.a. 1+j, b. 3-j3sqrt(3), c.1/sqrt(2)cos(120kt-45), d.1, e. 4; 2.a.C=20mF; 3. Vo=2; 4. R=20k=> Io=1.2msqrt(2) or L=200H=>Io=600microsqrt(2); 5.Vth=12exp^(-j45), Zth=6k-6kj; 6. Vth=-12, Zth=4; 7. Vth=-VsRj/X1(Beta+1), Zth=R/(beta+1); 8.L=15mH, 9. Vth=72exp^(j37), Zth=0.06exp^(j114); 10. R=1k, Vo=2/1ksqrt(2) |
T, July 26 |
|
You do not need to do #3. |
1. Vo=Is2R4R6(R1+R2+R3)/(R1+R2)(R4+R5+R6)-is1(R1R3)/(R1+R2); b)R3=150k; c) Vo=idm*60k; d) Rin=1.2k; 2. a=L=1mH, b=R=10k; 3. I1=40, i(t)=40cos(377t)A, 4. Vth=-1.2, Rth=2.4k; RL=2.4k, Pmax=150microW |
R, Aug 4 |
This document: https://my.ece.utah.edu/~ece1270/indexECE1270Su11.htm, last modified 08/04/2011 03:36:24.